BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 11058102)

  • 21. Structural basis of RXR-DNA interactions.
    Zhao Q; Chasse SA; Devarakonda S; Sierk ML; Ahvazi B; Rastinejad F
    J Mol Biol; 2000 Feb; 296(2):509-20. PubMed ID: 10669605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif.
    Xue GP
    Biochim Biophys Acta; 2002 Aug; 1577(1):63-72. PubMed ID: 12151096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A plant gene encoding a Myb-like protein that binds telomeric GGTTTAG repeats in vitro.
    Chen CM; Wang CT; Ho CH
    J Biol Chem; 2001 May; 276(19):16511-9. PubMed ID: 11278537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The AP2/EREBP family of plant transcription factors.
    Riechmann JL; Meyerowitz EM
    Biol Chem; 1998 Jun; 379(6):633-46. PubMed ID: 9687012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations.
    Mizukami Y; Huang H; Tudor M; Hu Y; Ma H
    Plant Cell; 1996 May; 8(5):831-45. PubMed ID: 8672883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a novel transcription factor binding to the regulatory regions of the human pro-alpha1(I) collagen gene.
    Zhao MK; Pretorius PJ; de Vries WN
    Arch Biochem Biophys; 2000 Apr; 376(2):281-7. PubMed ID: 10775414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dimerization and DNA binding of auxin response factors.
    Ulmasov T; Hagen G; Guilfoyle TJ
    Plant J; 1999 Aug; 19(3):309-19. PubMed ID: 10476078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A single residue substitution causes a switch from the dual DNA binding specificity of plant transcription factor MYB.Ph3 to the animal c-MYB specificity.
    Solano R; Fuertes A; Sánchez-Pulido L; Valencia A; Paz-Ares J
    J Biol Chem; 1997 Jan; 272(5):2889-95. PubMed ID: 9006933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phylogeny and domain evolution in the APETALA2-like gene family.
    Kim S; Soltis PS; Wall K; Soltis DE
    Mol Biol Evol; 2006 Jan; 23(1):107-20. PubMed ID: 16151182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS.
    Huang H; Mizukami Y; Hu Y; Ma H
    Nucleic Acids Res; 1993 Oct; 21(20):4769-76. PubMed ID: 7901838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration.
    Medina J; Bargues M; Terol J; Pérez-Alonso M; Salinas J
    Plant Physiol; 1999 Feb; 119(2):463-70. PubMed ID: 9952441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The repressive function of AP2 transcription factor on the hepatocyte growth factor gene promoter.
    Jiang JG; DeFrances MC; Machen J; Johnson C; Zarnegar R
    Biochem Biophys Res Commun; 2000 Jun; 272(3):882-6. PubMed ID: 10860846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis.
    Okamuro JK; Caster B; Villarroel R; Van Montagu M; Jofuku KD
    Proc Natl Acad Sci U S A; 1997 Jun; 94(13):7076-81. PubMed ID: 9192694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A consensus DNA recognition motif for two KDWK transcription factors identifies flexible-length, CpG-methylation sensitive cognate binding sites in the majority of human promoters.
    Burnett E; Christensen J; Tattersall P
    J Mol Biol; 2001 Dec; 314(5):1029-39. PubMed ID: 11743720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a consensus DNA-binding site for the TCP domain transcription factor TCP2 and its important roles in the growth and development of Arabidopsis.
    He Z; Zhou X; Chen J; Yin L; Zeng Z; Xiang J; Liu S
    Mol Biol Rep; 2021 Mar; 48(3):2223-2233. PubMed ID: 33689093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding.
    Gutsche N; Zachgo S
    PLoS One; 2016; 11(4):e0153810. PubMed ID: 27128442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth.
    Elliott RC; Betzner AS; Huttner E; Oakes MP; Tucker WQ; Gerentes D; Perez P; Smyth DR
    Plant Cell; 1996 Feb; 8(2):155-68. PubMed ID: 8742707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family.
    Feng JX; Liu D; Pan Y; Gong W; Ma LG; Luo JC; Deng XW; Zhu YX
    Plant Mol Biol; 2005 Dec; 59(6):853-68. PubMed ID: 16307362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS.
    Riechmann JL; Krizek BA; Meyerowitz EM
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4793-8. PubMed ID: 8643482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A serine/threonine protein kinase gene isolated by an in vivo binding procedure using the Arabidopsis floral homeotic gene product, AGAMOUS.
    Ito T; Takahashi N; Shimura Y; Okada K
    Plant Cell Physiol; 1997 Mar; 38(3):248-58. PubMed ID: 9150601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.