BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 11058116)

  • 1. Analysis of Groucho-histone interactions suggests mechanistic similarities between Groucho- and Tup1-mediated repression.
    Flores-Saaib RD; Courey AJ
    Nucleic Acids Res; 2000 Nov; 28(21):4189-96. PubMed ID: 11058116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development.
    Chen G; Fernandez J; Mische S; Courey AJ
    Genes Dev; 1999 Sep; 13(17):2218-30. PubMed ID: 10485845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the C-terminal WD40 repeat domain of the human Groucho/TLE1 transcriptional corepressor.
    Pickles LM; Roe SM; Hemingway EJ; Stifani S; Pearl LH
    Structure; 2002 Jun; 10(6):751-61. PubMed ID: 12057191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ssn6-Tup1 interacts with class I histone deacetylases required for repression.
    Watson AD; Edmondson DG; Bone JR; Mukai Y; Yu Y; Du W; Stillman DJ; Roth SY
    Genes Dev; 2000 Nov; 14(21):2737-44. PubMed ID: 11069890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Groucho/TLE family proteins and transcriptional repression.
    Chen G; Courey AJ
    Gene; 2000 May; 249(1-2):1-16. PubMed ID: 10831834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness.
    Guenther MG; Lane WS; Fischle W; Verdin E; Lazar MA; Shiekhattar R
    Genes Dev; 2000 May; 14(9):1048-57. PubMed ID: 10809664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors.
    Levanon D; Goldstein RE; Bernstein Y; Tang H; Goldenberg D; Stifani S; Paroush Z; Groner Y
    Proc Natl Acad Sci U S A; 1998 Sep; 95(20):11590-5. PubMed ID: 9751710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Groucho oligomerization is required for repression in vivo.
    Song H; Hasson P; Paroush Z; Courey AJ
    Mol Cell Biol; 2004 May; 24(10):4341-50. PubMed ID: 15121853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4.
    Edmondson DG; Smith MM; Roth SY
    Genes Dev; 1996 May; 10(10):1247-59. PubMed ID: 8675011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae.
    Green SR; Johnson AD
    Mol Biol Cell; 2004 Sep; 15(9):4191-202. PubMed ID: 15240822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Groucho-mediated repression may result from a histone deacetylase-dependent increase in nucleosome density.
    Winkler CJ; Ponce A; Courey AJ
    PLoS One; 2010 Apr; 5(4):e10166. PubMed ID: 20405012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The WD repeats of Tup1 interact with the homeo domain protein alpha 2.
    Komachi K; Redd MJ; Johnson AD
    Genes Dev; 1994 Dec; 8(23):2857-67. PubMed ID: 7995523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone-dependent association of Tup1-Ssn6 with repressed genes in vivo.
    Davie JK; Trumbly RJ; Dent SY
    Mol Cell Biol; 2002 Feb; 22(3):693-703. PubMed ID: 11784848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo.
    Davie JK; Edmondson DG; Coco CB; Dent SY
    J Biol Chem; 2003 Dec; 278(50):50158-62. PubMed ID: 14525981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae.
    Zhang Z; Reese JC
    J Biol Chem; 2004 Sep; 279(38):39240-50. PubMed ID: 15254041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Groucho-mediated repression revealed by genome-wide analysis of Groucho binding and activity.
    Chambers M; Turki-Judeh W; Kim MW; Chen K; Gallaher SD; Courey AJ
    BMC Genomics; 2017 Feb; 18(1):215. PubMed ID: 28245789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast.
    Wu J; Suka N; Carlson M; Grunstein M
    Mol Cell; 2001 Jan; 7(1):117-26. PubMed ID: 11172717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless.
    Barolo S; Stone T; Bang AG; Posakony JW
    Genes Dev; 2002 Aug; 16(15):1964-76. PubMed ID: 12154126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of histone binding and transcriptional repressor functions in a Schizosaccharomyces pombe Tup1p homolog.
    Mukai Y; Matsuo E; Roth SY; Harashima S
    Mol Cell Biol; 1999 Dec; 19(12):8461-8. PubMed ID: 10567571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone acetylation at promoters is differentially affected by specific activators and repressors.
    Deckert J; Struhl K
    Mol Cell Biol; 2001 Apr; 21(8):2726-35. PubMed ID: 11283252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.