These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 11058690)
1. Using patient-reportable clinical history factors to predict myocardial infarction. Wang SJ; Ohno-Machado L; Fraser HS; Kennedy RL Comput Biol Med; 2001 Jan; 31(1):1-13. PubMed ID: 11058690 [TBL] [Abstract][Full Text] [Related]
2. A neural computational aid to the diagnosis of acute myocardial infarction. Baxt WG; Shofer FS; Sites FD; Hollander JE Ann Emerg Med; 2002 Apr; 39(4):366-73. PubMed ID: 11919522 [TBL] [Abstract][Full Text] [Related]
3. Use of artificial neural networks within deterministic logic for the computer ECG diagnosis of inferior myocardial infarction. Yang TF; Devine B; Macfarlane PW J Electrocardiol; 1994; 27 Suppl():188-93. PubMed ID: 7884359 [TBL] [Abstract][Full Text] [Related]
4. A neural network trained to identify the presence of myocardial infarction bases some decisions on clinical associations that differ from accepted clinical teaching. Baxt WG Med Decis Making; 1994; 14(3):217-22. PubMed ID: 7934708 [TBL] [Abstract][Full Text] [Related]
5. Use of an artificial neural network for the diagnosis of myocardial infarction. Baxt WG Ann Intern Med; 1991 Dec; 115(11):843-8. PubMed ID: 1952470 [TBL] [Abstract][Full Text] [Related]
6. Using neural networks and just nine patient-reportable factors of screen for AMI. Bulgiba AM; Fisher MH Health Informatics J; 2006 Sep; 12(3):213-25. PubMed ID: 17023409 [TBL] [Abstract][Full Text] [Related]
7. [Development of a computer program for early diagnosis of acute myocardial infarction]. Aase O; Jonsbu J; Erikssen J; Rollag A Tidsskr Nor Laegeforen; 1990 Mar; 110(9):1071-6. PubMed ID: 2184538 [TBL] [Abstract][Full Text] [Related]
8. Evaluating variable selection methods for diagnosis of myocardial infarction. Dreiseitl S; Ohno-Machado L; Vinterbo S Proc AMIA Symp; 1999; ():246-50. PubMed ID: 10566358 [TBL] [Abstract][Full Text] [Related]
9. Neural network analysis of biochemical markers for early assessment of acute myocardial infarction. Ellenius J; Groth T; Lindahl B Stud Health Technol Inform; 1997; 43 Pt A():382-5. PubMed ID: 10179578 [TBL] [Abstract][Full Text] [Related]
11. Use of an artificial neural network to predict head injury outcome. Rughani AI; Dumont TM; Lu Z; Bongard J; Horgan MA; Penar PL; Tranmer BI J Neurosurg; 2010 Sep; 113(3):585-90. PubMed ID: 20020844 [TBL] [Abstract][Full Text] [Related]
12. Agreement between artificial neural networks and experienced electrocardiographer on electrocardiographic diagnosis of healed myocardial infarction. Hedén B; Ohlsson M; Rittner R; Pahlm O; Haisty WK; Peterson C; Edenbrandt L J Am Coll Cardiol; 1996 Oct; 28(4):1012-6. PubMed ID: 8837583 [TBL] [Abstract][Full Text] [Related]
13. Using classification tree and logistic regression methods to diagnose myocardial infarction. Tsien CL; Fraser HS; Long WJ; Kennedy RL Stud Health Technol Inform; 1998; 52 Pt 1():493-7. PubMed ID: 10384505 [TBL] [Abstract][Full Text] [Related]
14. Use of neural networks to diagnose acute myocardial infarction. I. Methodology. Jørgensen JS; Pedersen JB; Pedersen SM Clin Chem; 1996 Apr; 42(4):604-12. PubMed ID: 8605679 [TBL] [Abstract][Full Text] [Related]
15. WeAidU-a decision support system for myocardial perfusion images using artificial neural networks. Ohlsson M Artif Intell Med; 2004 Jan; 30(1):49-60. PubMed ID: 14684264 [TBL] [Abstract][Full Text] [Related]
16. Artificial neural networks for the electrocardiographic diagnosis of healed myocardial infarction. Hedén B; Edenbrandt L; Haisty WK; Pahlm O Am J Cardiol; 1994 Jul; 74(1):5-8. PubMed ID: 8017306 [TBL] [Abstract][Full Text] [Related]
17. Intelligent computer reporting 'lack of experience': a confidence measure for decision support systems. Holst H; Ohlsson M; Peterson C; Edenbrandt L Clin Physiol; 1998 Mar; 18(2):139-47. PubMed ID: 9568353 [TBL] [Abstract][Full Text] [Related]
18. Use of an artificial neural network to analyse an ECG with QS complex in V1-2 leads. Ouyang N; Ikeda M; Yamauchi K Med Biol Eng Comput; 1997 Sep; 35(5):556-60. PubMed ID: 9374065 [TBL] [Abstract][Full Text] [Related]
19. The added value of ECG-gating for the diagnosis of myocardial infarction using myocardial perfusion scintigraphy and artificial neural networks. Gjertsson P; Lomsky M; Richter J; Ohlsson M; Tout D; van Aswegen A; Underwood R; Edenbrandt L Clin Physiol Funct Imaging; 2006 Sep; 26(5):301-4. PubMed ID: 16939508 [TBL] [Abstract][Full Text] [Related]
20. An artificial neural network system for diagnosis of acute myocardial infarction (AMI) in the accident and emergency department: evaluation and comparison with serum myoglobin measurements. Kennedy RL; Harrison RF; Burton AM; Fraser HS; Hamer WG; MacArthur D; McAllum R; Steedman DJ Comput Methods Programs Biomed; 1997 Feb; 52(2):93-103. PubMed ID: 9034674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]