BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11058750)

  • 21. Identification, expression, and evolutionary analyses of plant lipocalins.
    Charron JB; Ouellet F; Pelletier M; Danyluk J; Chauve C; Sarhan F
    Plant Physiol; 2005 Dec; 139(4):2017-28. PubMed ID: 16306142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo.
    Müller-Moulé P; Conklin PL; Niyogi KK
    Plant Physiol; 2002 Mar; 128(3):970-7. PubMed ID: 11891252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion.
    Niyogi KK; Grossman AR; Björkman O
    Plant Cell; 1998 Jul; 10(7):1121-34. PubMed ID: 9668132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of an atypical de-epoxidase for photoprotection in the green lineage.
    Li Z; Peers G; Dent RM; Bai Y; Yang SY; Apel W; Leonelli L; Niyogi KK
    Nat Plants; 2016 Sep; 2():16140. PubMed ID: 27618685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers.
    Latowski D; Kruk J; Burda K; Skrzynecka-Jaskier M; Kostecka-Gugała A; Strzałka K
    Eur J Biochem; 2002 Sep; 269(18):4656-65. PubMed ID: 12230579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression of violaxanthin de-epoxidase: properties of C-terminal deletions on activity and pH-dependent lipid binding.
    Hieber AD; Bugos RC; Verhoeven AS; Yamamoto HY
    Planta; 2002 Jan; 214(3):476-83. PubMed ID: 11855651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amino sugars: new inhibitors of zeaxanthin epoxidase, a violaxanthin cycle enzyme.
    Latowski D; Banaś AK; Strzałka K; Gabryś H
    J Plant Physiol; 2007 Mar; 164(3):231-7. PubMed ID: 17074410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae.
    Goss R; Latowski D
    Front Plant Sci; 2020; 11():455. PubMed ID: 32425962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of cucumber violaxanthin de-epoxidase gene promoter in Arabidopsis.
    Li X; Sui X; Zhao W; Huang H; Chen Y; Zhang Z
    J Biosci Bioeng; 2015 Apr; 119(4):470-7. PubMed ID: 25449756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase.
    Havaux M; Bonfils JP; Lütz C; Niyogi KK
    Plant Physiol; 2000 Sep; 124(1):273-84. PubMed ID: 10982442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shedding light on the dark side of xanthophyll cycles.
    Fernández-Marín B; Roach T; Verhoeven A; García-Plazaola JI
    New Phytol; 2021 May; 230(4):1336-1344. PubMed ID: 33452715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into the binding mechanism of ascorbic acid and violaxanthin with violaxanthin de-epoxidase (VDE) and chlorophycean violaxanthin de-epoxidase (CVDE) enzymes.
    Biswal S; Gupta PSS; Panda SK; Bhat HR; Rana MK
    Photosynth Res; 2023 Jun; 156(3):337-354. PubMed ID: 36847893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum.
    Zhou J; Zeng L; Liu J; Xing D
    PLoS Pathog; 2015 May; 11(5):e1004878. PubMed ID: 25993128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light.
    Bugos RC; Chang SH; Yamamoto HY
    Plant Physiol; 1999 Sep; 121(1):207-14. PubMed ID: 10482676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutation analysis of violaxanthin de-epoxidase identifies substrate-binding sites and residues involved in catalysis.
    Saga G; Giorgetti A; Fufezan C; Giacometti GM; Bassi R; Morosinotto T
    J Biol Chem; 2010 Jul; 285(31):23763-70. PubMed ID: 20507981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiacylglycerol micelles.
    Hieber AD; Kawabata O; Yamamoto HY
    Plant Cell Physiol; 2004 Jan; 45(1):92-102. PubMed ID: 14749490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The peculiar NPQ regulation in the stramenopile Phaeomonas sp. challenges the xanthophyll cycle dogma.
    Berne N; Fabryova T; Istaz B; Cardol P; Bailleul B
    Biochim Biophys Acta Bioenerg; 2018 Jul; 1859(7):491-500. PubMed ID: 29625087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.
    Coesel S; Oborník M; Varela J; Falciatore A; Bowler C
    PLoS One; 2008 Aug; 3(8):e2896. PubMed ID: 18682837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systems Metabolic Engineering for Efficient Violaxanthin Production in Yeast.
    Wang J; Zhou X; Li K; Wang H; Zhang C; Shi Y; Yao M; Wang Y; Xiao W
    J Agric Food Chem; 2024 May; 72(18):10459-10468. PubMed ID: 38666490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leaf orientation and the response of the xanthophyll cycle to incident light.
    Adams WW; Volk M; Hoehn A; Demmig-Adams B
    Oecologia; 1992 Jun; 90(3):404-410. PubMed ID: 28313528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.