These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11058794)

  • 21. ERPs in an oddball task under vection-inducing visual stimulation.
    Stróżak P; Francuz P; Augustynowicz P; Ratomska M; Fudali-Czyż A; Bałaj B
    Exp Brain Res; 2016 Dec; 234(12):3473-3482. PubMed ID: 27488367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of selective visual attention in the parietal and temporal areas of the human cortex using evoked potential data.
    Baranov-Krylov IN; Shuvaev VT
    Neurosci Behav Physiol; 2005 Feb; 35(2):159-64. PubMed ID: 15779328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Characteristics and distribution of ERP by different field stimulation].
    Liu XQ; Li QQ; Chang P; Chen XP
    Fa Yi Xue Za Zhi; 2012 Feb; 28(1):28-31, 35. PubMed ID: 22435334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. P1 and P2 components of human visual evoked potentials are modulated by depth perception of 3-dimensional images.
    Omoto S; Kuroiwa Y; Otsuka S; Baba Y; Wang C; Li M; Mizuki N; Ueda N; Koyano S; Suzuki Y
    Clin Neurophysiol; 2010 Mar; 121(3):386-91. PubMed ID: 20071231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrophysiological correlates of attention-spreading in visual grouping.
    Kasai T; Kondo M
    Neuroreport; 2007 Jan; 18(1):93-8. PubMed ID: 17259868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ad-hoc and context-dependent adjustments of selective attention in conflict control: an ERP study with visual probes.
    Nigbur R; Schneider J; Sommer W; Dimigen O; Stürmer B
    Neuroimage; 2015 Feb; 107():76-84. PubMed ID: 25482266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. P3a from a passive visual stimulus task.
    Jeon YW; Polich J
    Clin Neurophysiol; 2001 Dec; 112(12):2202-8. PubMed ID: 11738190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interhemisphere differences during tasks involving attention and selection of lateralized stimuli.
    Baranov-Krylov IN; Shuvaev VT; Kanunikov IE
    Neurosci Behav Physiol; 2007 Oct; 37(8):811-20. PubMed ID: 17922246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of inter-hemispheric transfer in generating visual evoked potentials in V1-damaged brain hemispheres.
    Kavcic V; Triplett RL; Das A; Martin T; Huxlin KR
    Neuropsychologia; 2015 Feb; 68():82-93. PubMed ID: 25575450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Directed attention influence on the human brain potentials under conditions of probability visual stimulation].
    Slavutskaia MV; Shul'govskiĭ VV; Semina TK
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2005; 55(6):788-97. PubMed ID: 16396485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Changes in the late components of evoked cortical potentials during the human solving of a visual-spatial task].
    Taroian NA; Genkina OA; Miamlin VV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1992; 42(1):28-36. PubMed ID: 1316013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visuo-spatial neural response interactions in early cortical processing during a simple reaction time task: a high-density electrical mapping study.
    Murray MM; Foxe JJ; Higgins BA; Javitt DC; Schroeder CE
    Neuropsychologia; 2001; 39(8):828-44. PubMed ID: 11369406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Slow fluctuations in attentional control of sensory cortex.
    Kam JW; Dao E; Farley J; Fitzpatrick K; Smallwood J; Schooler JW; Handy TC
    J Cogn Neurosci; 2011 Feb; 23(2):460-70. PubMed ID: 20146593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetries in event-related potentials during rhyme-matching: confirmation of the null effects of handedness.
    Barrett SE; Rugg MD
    Neuropsychologia; 1989; 27(4):539-48. PubMed ID: 2733826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Interhemisphere differences of extrastriate cortical activation during attention and selection of lateralized visual stimuli in humans].
    Baranov-Krylov IN; Shuvaev VT; Kanunikov IE
    Ross Fiziol Zh Im I M Sechenova; 2006 Jun; 92(6):709-22. PubMed ID: 16967868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological correlates of grapheme-phoneme conversion.
    Huang K; Itoh K; Suwazono S; Nakada T
    Neurosci Lett; 2004 Aug; 366(3):254-8. PubMed ID: 15288429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Processing emotion from the eyes: a divided visual field and ERP study.
    Beaton AA; Fouquet NC; Maycock NC; Platt E; Payne LS; Derrett A
    Laterality; 2012; 17(4):486-514. PubMed ID: 21337252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency analysis of the EEG during spatial selective attention.
    Gómez CM; Vázquez M; Vaquero E; López-Mendoza D; Cardoso MJ
    Int J Neurosci; 1998 Jul; 95(1-2):17-32. PubMed ID: 9845013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Behavioral and electrophysiological evidence of a right hemisphere bias for the influence of negative emotion on higher cognition.
    Simon-Thomas ER; Role KO; Knight RT
    J Cogn Neurosci; 2005 Mar; 17(3):518-29. PubMed ID: 15814010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissociation of visual C1 and P1 components as a function of attentional load: an event-related potential study.
    Fu S; Fedota JR; Greenwood PM; Parasuraman R
    Biol Psychol; 2010 Sep; 85(1):171-8. PubMed ID: 20599467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.