These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 11058813)
1. Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier. Uesu NY; Pineda EA; Hechenleitner AA Int J Pharm; 2000 Sep; 206(1-2):85-96. PubMed ID: 11058813 [TBL] [Abstract][Full Text] [Related]
2. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending. Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448 [TBL] [Abstract][Full Text] [Related]
3. Batch effects, water content and aqueous/organic solvent reactivity of microcrystalline cellulose samples. Ardizzone S; Dioguardi FS; Mussini PR; Mussini T; Rondinini S; Vercelli B; Vertova A Int J Biol Macromol; 1999 Dec; 26(4):269-77. PubMed ID: 10569289 [TBL] [Abstract][Full Text] [Related]
4. Isolation and characterization of microcrystalline cellulose from roselle fibers. Kian LK; Jawaid M; Ariffin H; Alothman OY Int J Biol Macromol; 2017 Oct; 103():931-940. PubMed ID: 28549863 [TBL] [Abstract][Full Text] [Related]
5. Influence of water-cellulose binding energy on stability of acetylsalicylic acid. Heidarian M; Mihranyan A; Strømme M; Ek R Int J Pharm; 2006 Oct; 323(1-2):139-45. PubMed ID: 16854539 [TBL] [Abstract][Full Text] [Related]
6. Characterization of microcrystalline cellulose loaded diclofenac calcium alginate gel beads in vitro. Pongjanyakul T Pharmazie; 2007 Jul; 62(7):493-8. PubMed ID: 17718188 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the thermal properties of microcrystalline cellulose by modulated temperature differential scanning calorimetry. Picker KM; Hoag SW J Pharm Sci; 2002 Feb; 91(2):342-9. PubMed ID: 11835194 [TBL] [Abstract][Full Text] [Related]
8. To Evaluate the Effect of Solvents and Different Relative Humidity Conditions on Thermal and Rheological Properties of Microcrystalline Cellulose 101 Using METHOCEL™ E15LV as a Binder. Jagia M; Trivedi M; Dave RH AAPS PharmSciTech; 2016 Aug; 17(4):995-1006. PubMed ID: 26729530 [TBL] [Abstract][Full Text] [Related]
9. The effect of microcrystalline cellulose crystallinity on the hydrophilic property of tablets and the hydrolysis of acetylsalicylic acid as active pharmaceutical ingredient inside tablets. Awa K; Shinzawa H; Ozaki Y AAPS PharmSciTech; 2015 Aug; 16(4):865-70. PubMed ID: 25583304 [TBL] [Abstract][Full Text] [Related]
10. Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient. Adeleye OA; Bamiro OA; Albalawi DA; Alotaibi AS; Iqbal H; Sanyaolu S; Femi-Oyewo MN; Sodeinde KO; Yahaya ZS; Thiripuranathar G; Menaa F Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079372 [TBL] [Abstract][Full Text] [Related]
12. Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Kalita RD; Nath Y; Ochubiojo ME; Buragohain AK Colloids Surf B Biointerfaces; 2013 Aug; 108():85-9. PubMed ID: 23524080 [TBL] [Abstract][Full Text] [Related]
13. Morphological, Physiochemical and Thermal Properties of Microcrystalline Cellulose (MCC) Extracted from Bamboo Fiber. Rasheed M; Jawaid M; Karim Z; Abdullah LC Molecules; 2020 Jun; 25(12):. PubMed ID: 32570929 [TBL] [Abstract][Full Text] [Related]
14. Effect of some commercial grades of microcrystalline cellulose on flowability, compressibility, and dissolution profile of piroxicam liquisolid compacts. Javadzadeh Y; Shariati H; Movahhed-Danesh E; Nokhodchi A Drug Dev Ind Pharm; 2009 Feb; 35(2):243-51. PubMed ID: 18785038 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of novel microcrystalline cellulose from Ensete glaucum (Roxb.) Cheesman biomass as sustainable drug delivery biomaterial. Pachuau L; Dutta RS; Hauzel L; Devi TB; Deka D Carbohydr Polym; 2019 Feb; 206():336-343. PubMed ID: 30553330 [TBL] [Abstract][Full Text] [Related]
16. Water sorption and near IR spectroscopy to study the differences between microcrystalline cellulose and silicified microcrystalline cellulose before and after wet granulation. Buckton G; Yonemochi E; Yoon WL; Moffat AC Int J Pharm; 1999 Apr; 181(1):41-7. PubMed ID: 10370201 [TBL] [Abstract][Full Text] [Related]
17. Extrusion-spheronisation of microcrystalline cellulose pastes using a non-aqueous liquid binder. Mascia S; Seiler C; Fitzpatrick S; Wilson DI Int J Pharm; 2010 Apr; 389(1-2):1-9. PubMed ID: 20123008 [TBL] [Abstract][Full Text] [Related]
18. DEVELOPMENT AND EVALUATION OF IVABRADINE HCI-LOADED POLYMERIC MICROSPHERES PREPARED WITH EUDRAGIT L100-55 (METHACRYLIC ACID-ETHYL ACRYLATE COPOLYMER) AND ETHYL CELLULOSE FOR CONTROLLED DRUG RELEASE. Majeed A; Ranjha NM; Hanif M; Abbas G; Khan MA Acta Pol Pharm; 2017 Mar; 74(2):565-578. PubMed ID: 29624261 [TBL] [Abstract][Full Text] [Related]
19. Properties of microcrystalline cellulose and powder cellulose after extrusion/spheronization as studied by fourier transform Raman spectroscopy and environmental scanning electron microscopy. Fechner PM; Wartewig S; Füting M; Heilmann A; Neubert RH; Kleinebudde P AAPS PharmSci; 2003 Nov; 5(4):E31. PubMed ID: 15198519 [TBL] [Abstract][Full Text] [Related]
20. Near IR spectroscopy to quantify the silica content and difference between silicified microcrystalline cellulose and physical mixtures of microcrystalline cellulose and silica. Buckton G; Yonemochi E Eur J Pharm Sci; 2000 Mar; 10(1):77-80. PubMed ID: 10699385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]