These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 11059171)

  • 1. Precision grip force dynamics: a system identification approach.
    Fagergren A; Ekeberg O; Forssberg H
    IEEE Trans Biomed Eng; 2000 Oct; 47(10):1366-75. PubMed ID: 11059171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems.
    Hermsdörfer J; Hagl E; Nowak DA
    Hum Mov Sci; 2004 Nov; 23(5):643-62. PubMed ID: 15589626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticospinal control of the thumb-index grip depends on precision of force control: a transcranial magnetic stimulation and functional magnetic resonance imagery study in humans.
    Bonnard M; Galléa C; De Graaf JB; Pailhous J
    Eur J Neurosci; 2007 Feb; 25(3):872-80. PubMed ID: 17328782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control strategies correcting inaccurately programmed fingertip forces: model predictions derived from human behavior.
    Fagergren A; Ekeberg O; Forssberg H
    J Neurophysiol; 2003 Jun; 89(6):2904-16. PubMed ID: 12783946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain activity is similar during precision and power gripping with light force: an fMRI study.
    Kuhtz-Buschbeck JP; Gilster R; Wolff S; Ulmer S; Siebner H; Jansen O
    Neuroimage; 2008 May; 40(4):1469-81. PubMed ID: 18316207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study.
    Schabrun SM; Ridding MC; Miles TS
    Eur J Neurosci; 2008 Feb; 27(3):750-6. PubMed ID: 18279327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic and dynamic synergies of human precision-grip movements.
    Grinyagin IV; Biryukova EV; Maier MA
    J Neurophysiol; 2005 Oct; 94(4):2284-94. PubMed ID: 15917316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force level independent representations of predictive grip force-load force coupling: a PET activation study.
    Boecker H; Lee A; Mühlau M; Ceballos-Baumann A; Ritzl A; Spilker ME; Marquart C; Hermsdörfer J
    Neuroimage; 2005 Mar; 25(1):243-52. PubMed ID: 15734359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Holding an object: neural activity associated with fingertip force adjustments to external perturbations.
    Ehrsson HH; Fagergren A; Ehrsson GO; Forssberg H
    J Neurophysiol; 2007 Feb; 97(2):1342-52. PubMed ID: 16914607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear dynamic modeling of isometric force production in primate eye muscle.
    Anderson SR; Lepora NF; Porrill J; Dean P
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1554-67. PubMed ID: 20442041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple time scales in serial production of force: a tutorial on power spectral analysis of motor variability.
    Wing A; Daffertshofer A; Pressing J
    Hum Mov Sci; 2004 Nov; 23(5):569-90. PubMed ID: 15589622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic changes in corticospinal control of precision grip during wrist movements.
    Gagné M; Schneider C
    Brain Res; 2007 Aug; 1164():32-43. PubMed ID: 17632089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independence between the amount and structure of variability at low force levels.
    Sosnoff JJ; Valantine AD; Newell KM
    Neurosci Lett; 2006 Jan; 392(3):165-9. PubMed ID: 16188384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive force generation for precision-grip lifting by a spectral timing model of the cerebellum.
    Ulloa A; Bullock D; Rhodes BJ
    Neural Netw; 2003; 16(5-6):521-8. PubMed ID: 12850003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of digital anesthesia on force control using a precision grip.
    Monzée J; Lamarre Y; Smith AM
    J Neurophysiol; 2003 Feb; 89(2):672-83. PubMed ID: 12574445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision grip function after free toe transfer in children with hypoplastic digits.
    Schenker M; Wiberg M; Kay SP; Johansson RS
    J Plast Reconstr Aesthet Surg; 2007; 60(1):13-23. PubMed ID: 17126262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of visual stimulation on cortico-spinal coherence during isometric hand contraction in humans.
    Safri NM; Murayama N; Igasaki T; Hayashida Y
    Int J Psychophysiol; 2006 Aug; 61(2):288-93. PubMed ID: 16644045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force.
    Dafotakis M; Sparing R; Eickhoff SB; Fink GR; Nowak DA
    Brain Res; 2008 Sep; 1228():73-80. PubMed ID: 18601912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How predictive is grip force control in the complete absence of somatosensory feedback?
    Nowak DA; Glasauer S; Hermsdorfer J
    Brain; 2004 Jan; 127(Pt 1):182-92. PubMed ID: 14570822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functional role of different neural activation profiles during precision grip: an artificial neural network approach.
    Grandjean B; Hepp-Reymond MC; Maier MA
    J Physiol Paris; 2007; 101(1-3):9-21. PubMed ID: 18023563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.