BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 11059277)

  • 1. [Site-directed mutagenesis and effects on the enzymatic properties of subtilisin E].
    Yang YH; Jiang L; Yang SL; Wu YJ; Zhu LQ
    Sheng Wu Gong Cheng Xue Bao; 2000 May; 16(3):341-4. PubMed ID: 11059277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein engineering on subtilisin E.
    Zhu L; Ji Y
    Chin J Biotechnol; 1997; 13(1):9-15. PubMed ID: 9376509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strategy for in vivo screening of subtilisin E reaction specificity in E. coli periplasm.
    Sroga GE; Dordick JS
    Biotechnol Bioeng; 2002 Jun; 78(7):761-9. PubMed ID: 12001168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution.
    Abrahmsén L; Tom J; Burnier J; Butcher KA; Kossiakoff A; Wells JA
    Biochemistry; 1991 Apr; 30(17):4151-9. PubMed ID: 2021606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal stable and oxidation-resistant variant of subtilisin E.
    Yang Y; Jiang L; Zhu L; Wu Y; Yang S
    J Biotechnol; 2000 Aug; 81(2-3):113-8. PubMed ID: 10989170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mutants of subtilisin E].
    Yang YH; Wu YJ; Jiang L; Zhu LQ; Yang SL
    Sheng Wu Gong Cheng Xue Bao; 2000 Mar; 16(2):147-9. PubMed ID: 10976314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of the high-affinity calcium binding site in pro-subtilisin E with the insertion sequence IS1 of pro-Tk-subtilisin.
    Uehara R; Angkawidjaja C; Koga Y; Kanaya S
    Biochemistry; 2013 Dec; 52(50):9080-8. PubMed ID: 24279884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding promiscuous amidase activity of an esterase from Bacillus subtilis.
    Kourist R; Bartsch S; Fransson L; Hult K; Bornscheuer UT
    Chembiochem; 2008 Jan; 9(1):67-9. PubMed ID: 18022973
    [No Abstract]   [Full Text] [Related]  

  • 9. Site-selective glycosylation of subtilisin Bacillus lentus causes dramatic increases in esterase activity.
    Lloyd RC; Davis BG; Jones JB
    Bioorg Med Chem; 2000 Jul; 8(7):1537-44. PubMed ID: 10976502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.
    Nakagawa Y; Hasegawa A; Hiratake J; Sakata K
    Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media.
    Chen KQ; Arnold FH
    Biotechnology (N Y); 1991 Nov; 9(11):1073-7. PubMed ID: 1367624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide.
    Chen K; Arnold FH
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5618-22. PubMed ID: 8516309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed evolution of subtilisin E into a highly active and guanidinium chloride- and sodium dodecylsulfate-tolerant protease.
    Li Z; Roccatano D; Lorenz M; Schwaneberg U
    Chembiochem; 2012 Mar; 13(5):691-9. PubMed ID: 22408062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity.
    Fujii R; Nakagawa Y; Hiratake J; Sogabe A; Sakata K
    Protein Eng Des Sel; 2005 Feb; 18(2):93-101. PubMed ID: 15788423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of a broad esterolytic subtilisin using combined molecular evolution and periplasmic expression.
    Sroga GE; Dordick JS
    Protein Eng; 2001 Nov; 14(11):929-37. PubMed ID: 11742113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The nature of differences in amidase and esterase activities of some acyltrypsins].
    Bresler SE
    Biokhimiia; 1975; 40(2):408-10. PubMed ID: 1203361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.
    Weng M; Deng X; Bao W; Zhu L; Wu J; Cai Y; Jia Y; Zheng Z; Zou G
    Biochem Biophys Res Commun; 2015 Sep; 465(3):580-6. PubMed ID: 26291268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations.
    Park S; Morley KL; Horsman GP; Holmquist M; Hult K; Kazlauskas RJ
    Chem Biol; 2005 Jan; 12(1):45-54. PubMed ID: 15664514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding, proteolytic, and crystallographic analyses of mutations at the protease-inhibitor interface of the subtilisin BPN'/chymotrypsin inhibitor 2 complex.
    Radisky ES; Kwan G; Karen Lu CJ; Koshland DE
    Biochemistry; 2004 Nov; 43(43):13648-56. PubMed ID: 15504027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of left-handed glycine residue for high stability of the Tk-subtilisin propeptide as revealed by mutational and crystallographic analyses.
    Pulido MA; Tanaka S; Sringiew C; You DJ; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2007 Dec; 374(5):1359-73. PubMed ID: 17988685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.