These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 11059391)

  • 41. Release of the Antihypertensive Tripeptides Valine-Proline-Proline and Isoleucine-Proline-Proline from Bovine Milk Caseins during in Vitro Gastrointestinal Digestion.
    Rutella GS; Solieri L; Martini S; Tagliazucchi D
    J Agric Food Chem; 2016 Nov; 64(45):8509-8515. PubMed ID: 27790911
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controlled proteolysis and the properties of milk gels.
    Li J; Dalgleish DG
    J Agric Food Chem; 2006 Jun; 54(13):4687-95. PubMed ID: 16787016
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of the effect of somatic cell counts on casein proteolysis in ovine milk cheese by means of capillary electrophoresis.
    Revilla I; Vivar-Quintana AM; Rodríguez-Nogales JM
    J Capill Electrophor Microchip Technol; 2005; 9(3-4):45-52. PubMed ID: 16042124
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of simulated gastrointestinal digestion on the antihypertensive properties of synthetic beta-lactoglobulin peptide sequences.
    Hernández-Ledesma B; Miguel M; Amigo L; Aleixandre MA; Recio I
    J Dairy Res; 2007 Aug; 74(3):336-9. PubMed ID: 17466121
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lactococcin MMT24, a novel two-peptide bacteriocin produced by Lactococcus lactis isolated from rigouta cheese.
    Ghrairi T; Frère J; Berjeaud JM; Manai M
    Int J Food Microbiol; 2005 Dec; 105(3):389-98. PubMed ID: 16203054
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nisin-induced expression of a recombinant antihypertensive peptide in dairy lactic acid bacteria.
    Renye JA; Somkuti GA
    Biotechnol Lett; 2015 Jul; 37(7):1447-54. PubMed ID: 25846139
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exploitation of endogenous protease activity in raw mastitic milk by MALDI-TOF/TOF.
    Napoli A; Aiello D; Di Donna L; Prendushi H; Sindona G
    Anal Chem; 2007 Aug; 79(15):5941-8. PubMed ID: 17602500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteolytic systems of lactic acid bacteria.
    Savijoki K; Ingmer H; Varmanen P
    Appl Microbiol Biotechnol; 2006 Jul; 71(4):394-406. PubMed ID: 16628446
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Peptic digestion of beta-casein. Time course and fate of possible bioactive peptides.
    Schmelzer CE; Schöps R; Reynell L; Ulbrich-Hofmann R; Neubert RH; Raith K
    J Chromatogr A; 2007 Sep; 1166(1-2):108-15. PubMed ID: 17720176
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The proteolytic pathway of Lactococcus lactis.
    Poolman B; Kunji ER; Hagting A; Juillard V; Konings WN
    Soc Appl Bacteriol Symp Ser; 1995; 24():65S-75S. PubMed ID: 7570167
    [No Abstract]   [Full Text] [Related]  

  • 51. Starter bacteria are the prime agents of lipolysis in cheddar cheese.
    Hickey DK; Kilcawley KN; Beresford TP; Wilkinson MG
    J Agric Food Chem; 2006 Oct; 54(21):8229-35. PubMed ID: 17032033
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteolysis of milk proteins lactosylated in model systems.
    Dalsgaard TK; Nielsen JH; Larsen LB
    Mol Nutr Food Res; 2007 Apr; 51(4):404-14. PubMed ID: 17357984
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of the ripening times of ewe's milk cheese by multivariate regression analysis of capillary electrophoresis casein fractions.
    Albillos SM; Busto MD; Perez-Mateos M; Ortega N
    J Agric Food Chem; 2006 Oct; 54(21):8281-7. PubMed ID: 17032040
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria.
    Virtanen T; Pihlanto A; Akkanen S; Korhonen H
    J Appl Microbiol; 2007 Jan; 102(1):106-15. PubMed ID: 17184325
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression, purification, and characterization of arginine deiminase from Lactococcus lactis ssp. lactis ATCC 7962 in Escherichia coli BL21.
    Kim JE; Jeong DW; Lee HJ
    Protein Expr Purif; 2007 May; 53(1):9-15. PubMed ID: 17223359
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of pepsin from rabbit gastric extract, its action on β-casein and the effects of lipids on proteolysis.
    Sams L; Amara S; Mansuelle P; Puppo R; Lebrun R; Paume J; Giallo J; Carrière F
    Food Funct; 2018 Nov; 9(11):5975-5988. PubMed ID: 30379166
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Where do the immunostimulatory effects of oral proteolytic enzymes ('systemic enzyme therapy') come from? Microbial proteolysis as a possible starting point.
    Biziulevicius GA
    Med Hypotheses; 2006; 67(6):1386-8. PubMed ID: 16870353
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation.
    Settanni L; Massitti O; Van Sinderen D; Corsetti A
    J Appl Microbiol; 2005; 99(3):670-81. PubMed ID: 16108809
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Does fermented milk possess antihypertensive effect in humans?
    Usinger L; Ibsen H; Jensen LT
    J Hypertens; 2009 Jun; 27(6):1115-20. PubMed ID: 19387365
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Action of a cell wall proteinase from Lactococcus lactis subsp. cremoris SK11 on bovine alpha s1-casein.
    Reid JR; Moore CH; Midwinter GG; Pritchard GG
    Appl Microbiol Biotechnol; 1991 May; 35(2):222-7. PubMed ID: 1367548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.