These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 11059883)
1. Blood flow around hollow fibers. Dierickx PW; De Wachter D; Verdonck PR Int J Artif Organs; 2000 Sep; 23(9):610-7. PubMed ID: 11059883 [TBL] [Abstract][Full Text] [Related]
2. Intravascular blood oxygenation using hollow fibers in a disk-shaped configuration: experimental evaluation of the relationship between porosity and performance. Cattaneo GF; Reul H; Schmitz-Rode T; Steinseifer U ASAIO J; 2006; 52(2):180-5. PubMed ID: 16557105 [TBL] [Abstract][Full Text] [Related]
3. Experimental Approach to Visualize Flow in a Stacked Hollow Fiber Bundle of an Artificial Lung With Particle Image Velocimetry. Kaesler A; Schlanstein PC; Hesselmann F; Büsen M; Klaas M; Roggenkamp D; Schmitz-Rode T; Steinseifer U; Arens J Artif Organs; 2017 Jun; 41(6):529-538. PubMed ID: 27925231 [TBL] [Abstract][Full Text] [Related]
4. Numerical modeling of anisotropic fiber bundle behavior in oxygenators. Bhavsar SS; Schmitz-Rode T; Steinseifer U Artif Organs; 2011 Nov; 35(11):1095-102. PubMed ID: 21973082 [TBL] [Abstract][Full Text] [Related]
6. Two-dimensional finite element model for oxygen transfer in cross-flow hollow fiber membrane artificial lungs. Dierickx PW; de Wachter DS; Verdonck PR Int J Artif Organs; 2001 Sep; 24(9):628-35. PubMed ID: 11693419 [TBL] [Abstract][Full Text] [Related]
7. Uniformity of the fluid flow velocities within hollow fiber membranes of blood oxygenation devices. Mazaheri AR; Ahmadi G Artif Organs; 2006 Jan; 30(1):10-5. PubMed ID: 16409392 [TBL] [Abstract][Full Text] [Related]
8. Comparison of flow in numerical and physical models of a ventricular assist device using low- and high-viscosity fluids. König CS; Clark C; Mokhtarzadeh-Dehghan MR Proc Inst Mech Eng H; 1999; 213(5):423-32. PubMed ID: 10581969 [TBL] [Abstract][Full Text] [Related]
9. Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation. Bleyer J; Coussot P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063018. PubMed ID: 25019890 [TBL] [Abstract][Full Text] [Related]
10. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model. Akbarzadeh P Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174 [TBL] [Abstract][Full Text] [Related]
11. Effects of microstructure on flow properties of fibrous porous media at moderate Reynolds number. Tamayol A; Wong KW; Bahrami M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026318. PubMed ID: 22463328 [TBL] [Abstract][Full Text] [Related]
12. Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: computational and experimental studies. Zierenberg JR; Fujioka H; Cook KE; Grotberg JB J Biomech Eng; 2008 Jun; 130(3):031019. PubMed ID: 18532868 [TBL] [Abstract][Full Text] [Related]
13. Mass transfer in blood oxygenators using blood analogue fluids. Wickramasinghe SR; Kahr CM; Han B Biotechnol Prog; 2002; 18(4):867-73. PubMed ID: 12153323 [TBL] [Abstract][Full Text] [Related]
14. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm. Marrero VL; Tichy JA; Sahni O; Jansen KE J Biomech Eng; 2014 Oct; 136(10):101001. PubMed ID: 24769921 [TBL] [Abstract][Full Text] [Related]
15. Pulsatile flow past a cylinder: an experimental model of flow in an artificial lung. Lin YC; Brant DO; Bartlett RH; Hirschl RB; Bull JL ASAIO J; 2006; 52(6):614-23. PubMed ID: 17117049 [TBL] [Abstract][Full Text] [Related]
16. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow. Li L; Walker AM; Rival DE Biorheology; 2014; 51(4-5):275-91. PubMed ID: 25281596 [TBL] [Abstract][Full Text] [Related]
17. Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel. Hatami M; Hatami J; Ganji DD Comput Methods Programs Biomed; 2014 Feb; 113(2):632-41. PubMed ID: 24286727 [TBL] [Abstract][Full Text] [Related]
18. Wall-mode instability in plane shear flow of viscoelastic fluid over a deformable solid. Chokshi P; Bhade P; Kumaran V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023007. PubMed ID: 25768597 [TBL] [Abstract][Full Text] [Related]
19. Dialysate flow distribution in hollow fiber hemodialyzers with different dialysate pathway configurations. Ronco C; Brendolan A; Crepaldi C; Rodighiero M; Everard P; Ballestri M; Cappelli G; Spittle M; La Greca G Int J Artif Organs; 2000 Sep; 23(9):601-9. PubMed ID: 11059882 [TBL] [Abstract][Full Text] [Related]
20. Computational study of the blood flow in three types of 3D hollow fiber membrane bundles. Zhang J; Chen X; Ding J; Fraser KH; Taskin ME; Griffith BP; Wu ZJ J Biomech Eng; 2013 Dec; 135(12):121009. PubMed ID: 24141394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]