These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11059898)

  • 1. Coincidence of ipsilateral ocular dominance peaks with orientation pinwheel centers in cat visual cortex.
    Matsuda Y; Ohki K; Saito T; Ajima A; Kim DS
    Neuroreport; 2000 Oct; 11(15):3337-43. PubMed ID: 11059898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex.
    Crair MC; Ruthazer ES; Gillespie DC; Stryker MP
    J Neurophysiol; 1997 Jun; 77(6):3381-5. PubMed ID: 9212282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex.
    Nakagama H; Tani T; Tanaka S
    Neurosci Res; 2006 Aug; 55(4):370-82. PubMed ID: 16780978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats.
    Crair MC; Ruthazer ES; Gillespie DC; Stryker MP
    Neuron; 1997 Aug; 19(2):307-18. PubMed ID: 9292721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical imaging of orientation and ocular dominance maps in area 17 of cats with convergent strabismus.
    Engelmann R; Crook JM; Löwel S
    Vis Neurosci; 2002; 19(1):39-49. PubMed ID: 12180858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The layout of orientation and ocular dominance domains in area 17 of strabismic cats.
    Löwel S; Schmidt KE; Kim DS; Wolf F; Hoffsümmer F; Singer W; Bonhoeffer T
    Eur J Neurosci; 1998 Aug; 10(8):2629-43. PubMed ID: 9767393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the elastic net model applied to the formation of ocular dominance and orientation columns.
    Goodhill GJ; Cimponeriu A
    Network; 2000 May; 11(2):153-68. PubMed ID: 10880004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origins of feature selectivities and maps in the mammalian primary visual cortex.
    Vidyasagar TR; Eysel UT
    Trends Neurosci; 2015 Aug; 38(8):475-85. PubMed ID: 26209463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation-based development of ocularly matched orientation and ocular dominance maps: determination of required input activities.
    Erwin E; Miller KD
    J Neurosci; 1998 Dec; 18(23):9870-95. PubMed ID: 9822745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The layout of functional maps in area 18 of strabismic cats.
    Schmidt KF; Löwel S
    Neuroscience; 2006 Sep; 141(3):1525-31. PubMed ID: 16765525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex.
    Bonhoeffer T; Kim DS; Malonek D; Shoham D; Grinvald A
    Eur J Neurosci; 1995 Sep; 7(9):1973-88. PubMed ID: 8528473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional organization of neurons in cat striate cortex: variations in preferred orientation and orientation selectivity with receptive-field type, ocular dominance, and location in visual-field map.
    Payne BR; Berman N
    J Neurophysiol; 1983 Apr; 49(4):1051-72. PubMed ID: 6854357
    [No Abstract]   [Full Text] [Related]  

  • 13. Sensory experience modifies feature map relationships in visual cortex.
    Cloherty SL; Hughes NJ; Hietanen MA; Bhagavatula PS; Goodhill GJ; Ibbotson MR
    Elife; 2016 Jun; 5():. PubMed ID: 27310531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pinwheel-dipole configuration in cat early visual cortex.
    Ribot J; Romagnoni A; Milleret C; Bennequin D; Touboul J
    Neuroimage; 2016 Mar; 128():63-73. PubMed ID: 26707892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional mapping of horizontal connections in developing ferret visual cortex: experiments and modeling.
    Weliky M; Katz LC
    J Neurosci; 1994 Dec; 14(12):7291-305. PubMed ID: 7996176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of orientation and direction selectivity of cortical cells in kittens with monocular vision.
    Singer W
    Brain Res; 1976 Dec; 118(3):460-8. PubMed ID: 1009429
    [No Abstract]   [Full Text] [Related]  

  • 17. Influence of experience on orientation maps in cat visual cortex.
    Sengpiel F; Stawinski P; Bonhoeffer T
    Nat Neurosci; 1999 Aug; 2(8):727-32. PubMed ID: 10412062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistics and geometry of orientation selectivity in primary visual cortex.
    Sadeh S; Rotter S
    Biol Cybern; 2014 Oct; 108(5):631-53. PubMed ID: 24248916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistent mapping of orientation preference across irregular functional domains in ferret visual cortex.
    White LE; Bosking WH; Fitzpatrick D
    Vis Neurosci; 2001; 18(1):65-76. PubMed ID: 11347817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional organization of the cortical 17/18 border region in the cat.
    Diao YC; Jia WG; Swindale NV; Cynader MS
    Exp Brain Res; 1990; 79(2):271-82. PubMed ID: 2323374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.