BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 11060284)

  • 1. tRNA recognition of tRNA-guanine transglycosylase from a hyperthermophilic archaeon, Pyrococcus horikoshii.
    Watanabe M; Nameki N; Matsuo-Takasaki M; Nishimura S; Okada N
    J Biol Chem; 2001 Jan; 276(4):2387-94. PubMed ID: 11060284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. tRNA recognition by tRNA-guanine transglycosylase from Escherichia coli: the role of U33 in U-G-U sequence recognition.
    Nonekowski ST; Garcia GA
    RNA; 2001 Oct; 7(10):1432-41. PubMed ID: 11680848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tRNA-guanine transglycosylase from Escherichia coli: recognition of noncognate-cognate chimeric tRNA and discovery of a novel recognition site within the TpsiC arm of tRNA(Phe).
    Kung FL; Nonekowski S; Garcia GA
    RNA; 2000 Feb; 6(2):233-44. PubMed ID: 10688362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of archaeosine tRNA-guanine transglycosylase.
    Ishitani R; Nureki O; Fukai S; Kijimoto T; Nameki N; Watanabe M; Kondo H; Sekine M; Okada N; Nishimura S; Yokoyama S
    J Mol Biol; 2002 May; 318(3):665-77. PubMed ID: 12054814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tRNA-guanine transglycosylase from Escherichia coli. Minimal tRNA structure and sequence requirements for recognition.
    Curnow AW; Garcia GA
    J Biol Chem; 1995 Jul; 270(29):17264-7. PubMed ID: 7615526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of archaeosine, a novel derivative of 7-deazaguanosine specific to archaeal tRNA, proceeds via a pathway involving base replacement on the tRNA polynucleotide chain.
    Watanabe M; Matsuo M; Tanaka S; Akimoto H; Asahi S; Nishimura S; Katze JR; Hashizume T; Crain PF; McCloskey JA; Okada N
    J Biol Chem; 1997 Aug; 272(32):20146-51. PubMed ID: 9242689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RNA-binding PUA domain of archaeal tRNA-guanine transglycosylase is not required for archaeosine formation.
    Sabina J; Söll D
    J Biol Chem; 2006 Mar; 281(11):6993-7001. PubMed ID: 16407303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Escherichia coli tRNA-guanine transglycosylase can recognize and modify DNA.
    Nonekowski ST; Kung FL; Garcia GA
    J Biol Chem; 2002 Mar; 277(9):7178-82. PubMed ID: 11751936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. tRNA-guanine transglycosylase from Escherichia coli: recognition of full-length 'queuine-cognate' tRNAs.
    Kung FL; Garcia GA
    FEBS Lett; 1998 Jul; 431(3):427-32. PubMed ID: 9714557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypermodification of tRNA in Thermophilic archaea. Cloning, overexpression, and characterization of tRNA-guanine transglycosylase from Methanococcus jannaschii.
    Bai Y; Fox DT; Lacy JA; Van Lanen SG; Iwata-Reuyl D
    J Biol Chem; 2000 Sep; 275(37):28731-8. PubMed ID: 10862614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible adaptations in the structure of the tRNA-modifying enzyme tRNA-guanine transglycosylase and their implications for substrate selectivity, reaction mechanism and structure-based drug design.
    Brenk R; Stubbs MT; Heine A; Reuter K; Klebe G
    Chembiochem; 2003 Oct; 4(10):1066-77. PubMed ID: 14523925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. tRNA-guanine transglycosylase from Escherichia coli: gross tRNA structural requirements for recognition.
    Curnow AW; Kung FL; Koch KA; Garcia GA
    Biochemistry; 1993 May; 32(19):5239-46. PubMed ID: 8494901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A UGU sequence in the anticodon loop is a minimum requirement for recognition by Escherichia coli tRNA-guanine transglycosylase.
    Nakanishi S; Ueda T; Hori H; Yamazaki N; Okada N; Watanabe K
    J Biol Chem; 1994 Dec; 269(51):32221-5. PubMed ID: 7528209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative tertiary structure of tRNA for recognition by a posttranscriptional modification enzyme.
    Ishitani R; Nureki O; Nameki N; Okada N; Nishimura S; Yokoyama S
    Cell; 2003 May; 113(3):383-94. PubMed ID: 12732145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific modification of Shigella flexneri virF mRNA by tRNA-guanine transglycosylase in vitro.
    Hurt JK; Olgen S; Garcia GA
    Nucleic Acids Res; 2007; 35(14):4905-13. PubMed ID: 17626052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization and preliminary X-ray analysis of the archaeosine tRNA-guanine transglycosylase from Pyrococcus horikoshii.
    Ishitani R; Nureki O; Kijimoto T; Watanabe M; Kondo H; Nameki N; Okada N; Nishimura S; Yokoyama S
    Acta Crystallogr D Biol Crystallogr; 2001 Nov; 57(Pt 11):1659-62. PubMed ID: 11679736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between the stability of tRNA tertiary structure and the catalytic efficiency of a tRNA-modifying enzyme, archaeal tRNA-guanine transglycosylase.
    Nomura Y; Ohno S; Nishikawa K; Yokogawa T
    Genes Cells; 2016 Jan; 21(1):41-52. PubMed ID: 26663416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of tRNA-guanine transglycosylase: RNA modification by base exchange.
    Romier C; Reuter K; Suck D; Ficner R
    EMBO J; 1996 Jun; 15(11):2850-7. PubMed ID: 8654383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of the interaction of the tRNA modifying enzymes Tgt and QueA with a substrate tRNA.
    Mueller SO; Slany RK
    FEBS Lett; 1995 Mar; 361(2-3):259-64. PubMed ID: 7698334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: essential elements for recognition of tRNA substrates within the anticodon stem-loop.
    Soderberg T; Poulter CD
    Biochemistry; 2000 May; 39(21):6546-53. PubMed ID: 10828971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.