These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 110611)

  • 61. The projection of the visual field onto the lateral geniculate nucleus of the ferret.
    Zahs KR; Stryker MP
    J Comp Neurol; 1985 Nov; 241(2):210-24. PubMed ID: 4067015
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction veolcities of their inputs.
    So YT; Shapley R
    Exp Brain Res; 1979 Aug; 36(3):533-50. PubMed ID: 477781
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ordinal position and afferent input of neurons in monkey striate cortex.
    Bullier J; Henry GH
    J Comp Neurol; 1980 Oct; 193(4):913-35. PubMed ID: 6253535
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The distribution of acetylcholinesterase in the lateral geniculate nucleus of the cat and monkey.
    Dean AF; Bunch ST; Tolhurst DJ; Lewis PR
    Brain Res; 1982 Jul; 244(1):123-34. PubMed ID: 7116162
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18.
    Vidyasagar TR; Urbas JV
    Exp Brain Res; 1982; 46(2):157-69. PubMed ID: 7095028
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Inhibitory mechanisms within the receptive fields of the lateral geniculate body of the cat.
    Wróbel A
    Acta Neurobiol Exp (Wars); 1982; 42(1):93-107. PubMed ID: 7180593
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Visual response augmentation in cat (and macaque) LGN: potentiation by corticofugally mediated gain control in the temporal domain.
    Cudeiro J; Rivadulla C; Grieve KL
    Eur J Neurosci; 2000 Apr; 12(4):1135-44. PubMed ID: 10762345
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cortical contributions to saccadic suppression.
    Chahine G; Krekelberg B
    PLoS One; 2009 Sep; 4(9):e6900. PubMed ID: 19730739
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Shock-induced inhibition in the lateral geniculate nucleus of the rhesus monkey.
    Schiller PH; Malpeli JG
    Brain Res; 1977 Dec; 137(2):387-9. PubMed ID: 412566
    [No Abstract]   [Full Text] [Related]  

  • 70. The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey.
    Connolly M; Van Essen D
    J Comp Neurol; 1984 Jul; 226(4):544-64. PubMed ID: 6747034
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Inverted monocular vision prevents ocular dominance shift in kittens and impairs the functional state of visual cortex in adult cats.
    Singer W; Yinon U; Tretter F
    Brain Res; 1979 Mar; 164():294-9. PubMed ID: 427562
    [No Abstract]   [Full Text] [Related]  

  • 72. Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): correlations with cortical layers and cytochrome oxidase patterns.
    DeBruyn EJ; Casagrande VA; Beck PD; Bonds AB
    J Neurophysiol; 1993 Jan; 69(1):3-18. PubMed ID: 8381862
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Responses to wavelength contrast in the afferent visual systems of the cat and the rhesus monkey.
    Krüger JK
    Vision Res; 1979; 19(12):1351-8. PubMed ID: 119347
    [No Abstract]   [Full Text] [Related]  

  • 74. Inverted vision causes selective loss of striate cortex neurons with binocular, vertically oriented receptive fields.
    Singer W; Tretter F; Yinon U
    Brain Res; 1979 Jul; 170(1):177-81. PubMed ID: 466399
    [No Abstract]   [Full Text] [Related]  

  • 75. The primate retina contains two types of ganglion cells, with high and low contrast sensitivity.
    Kaplan E; Shapley RM
    Proc Natl Acad Sci U S A; 1986 Apr; 83(8):2755-7. PubMed ID: 3458235
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A new model of strabismic amblyopia: Loss of spatial acuity due to increased temporal dispersion of geniculate X-cell afferents on to cortical neurons.
    Crewther DP; Crewther SG
    Vision Res; 2015 Sep; 114():79-86. PubMed ID: 25906683
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nonlinear computations shaping temporal processing of precortical vision.
    Butts DA; Cui Y; Casti AR
    J Neurophysiol; 2016 Sep; 116(3):1344-57. PubMed ID: 27334959
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Receptive-field transformations between LGN neurons and S-cells of cat-striate cortex.
    Bullier J; Mustari MJ; Henry GH
    J Neurophysiol; 1982 Mar; 47(3):417-38. PubMed ID: 7069451
    [No Abstract]   [Full Text] [Related]  

  • 79. Suppression at high spatial frequencies in the lateral geniculate nucleus of the cat.
    Nolt MJ; Kumbhani RD; Palmer LA
    J Neurophysiol; 2007 Sep; 98(3):1167-80. PubMed ID: 17596414
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons.
    Allman J; Miezin F; McGuinness E
    Annu Rev Neurosci; 1985; 8():407-30. PubMed ID: 3885829
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.