BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11063005)

  • 1. Sustained loading increases the compressive strength of articular cartilage.
    Adams MA; Kerin AJ; Wisnom MR
    Connect Tissue Res; 1998; 39(4):245-56. PubMed ID: 11063005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The compressive strength of articular cartilage.
    Kerin AJ; Wisnom MR; Adams MA
    Proc Inst Mech Eng H; 1998; 212(4):273-80. PubMed ID: 9769695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How severe must repetitive loading be to kill chondrocytes in articular cartilage?
    Clements KM; Bee ZC; Crossingham GV; Adams MA; Sharif M
    Osteoarthritis Cartilage; 2001 Jul; 9(5):499-507. PubMed ID: 11467899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of surface fissures in articular cartilage in response to cyclic loading in vitro.
    Kerin AJ; Coleman A; Wisnom MR; Adams MA
    Clin Biomech (Bristol, Avon); 2003 Dec; 18(10):960-8. PubMed ID: 14580840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior.
    Setton LA; Zhu W; Mow VC
    J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental determination of stress distributions in articular cartilage before and after sustained loading.
    Adams MA; Kerin AJ; Bhatia LS; Chakrabarty G; Dolan P
    Clin Biomech (Bristol, Avon); 1999 Feb; 14(2):88-96. PubMed ID: 10619095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of compressive strain on cell viability in statically loaded articular cartilage.
    Torzilli PA; Deng XH; Ramcharan M
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):123-32. PubMed ID: 16506016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The "instantaneous" deformation of cartilage: effects of collagen fiber orientation and osmotic stress.
    Mizrahi J; Maroudas A; Lanir Y; Ziv I; Webber TJ
    Biorheology; 1986; 23(4):311-30. PubMed ID: 3779058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime?
    Barker MK; Seedhom BB
    Rheumatology (Oxford); 2001 Mar; 40(3):274-84. PubMed ID: 11285374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional anatomy of articular cartilage under compressive loading Quantitative aspects of global, local and zonal reactions of the collagenous network with respect to the surface integrity.
    Glaser C; Putz R
    Osteoarthritis Cartilage; 2002 Feb; 10(2):83-99. PubMed ID: 11869068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward an MRI-based method to measure non-uniform cartilage deformation: an MRI-cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading.
    Neu CP; Hull ML
    J Biomech Eng; 2003 Apr; 125(2):180-8. PubMed ID: 12751279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high frequencies.
    Fulcher GR; Hukins DW; Shepherd DE
    BMC Musculoskelet Disord; 2009 Jun; 10():61. PubMed ID: 19497105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cartilage interstitial fluid load support in unconfined compression.
    Park S; Krishnan R; Nicoll SB; Ateshian GA
    J Biomech; 2003 Dec; 36(12):1785-96. PubMed ID: 14614932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone.
    Burgin LV; Aspden RM
    J Mater Sci Mater Med; 2008 Feb; 19(2):703-11. PubMed ID: 17619965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Articular cartilage surface rupture during compression: investigating the effects of tissue hydration in relation to matrix health.
    Fick JM; Espino DM
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1311-7. PubMed ID: 21783140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does prior sustained compression make cartilage-on-bone more vulnerable to trauma?
    Kim W; Thambyah A; Broom N
    Clin Biomech (Bristol, Avon); 2012 Aug; 27(7):637-45. PubMed ID: 22534322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Articular Surface Compression on Cartilage Extracellular Matrix Deformation.
    Torzilli PA; Allen SN
    J Biomech Eng; 2022 Sep; 144(9):. PubMed ID: 35292801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Articular cartilage surface failure: an investigation of the rupture rate and morphology in relation to tissue health and hydration.
    Fick JM; Espino DM
    Proc Inst Mech Eng H; 2012 May; 226(5):389-96. PubMed ID: 22720392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of loading and material on the biomechanical properties and vitality of bovine cartilage in vitro.
    Pöllänen R; Tikkanen AM; Lammi MJ; Lappalainen R
    J Appl Biomater Biomech; 2011; 9(1):47-53. PubMed ID: 21445828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive cell-mediated changes in articular cartilage and bone in mice are initiated by a single session of controlled cyclic compressive loading.
    Ko FC; Dragomir CL; Plumb DA; Hsia AW; Adebayo OO; Goldring SR; Wright TM; Goldring MB; van der Meulen MC
    J Orthop Res; 2016 Nov; 34(11):1941-1949. PubMed ID: 26896841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.