BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 11063053)

  • 1. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium.
    Zipfel GJ; Babcock DJ; Lee JM; Choi DW
    J Neurotrauma; 2000 Oct; 17(10):857-69. PubMed ID: 11063053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial participation in ischemic and traumatic neural cell death.
    Fiskum G
    J Neurotrauma; 2000 Oct; 17(10):843-55. PubMed ID: 11063052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMDA receptor-mediated excitotoxic neuronal apoptosis in vitro and in vivo occurs in an ER stress and PUMA independent manner.
    Concannon CG; Ward MW; Bonner HP; Kuroki K; Tuffy LP; Bonner CT; Woods I; Engel T; Henshall DC; Prehn JH
    J Neurochem; 2008 May; 105(3):891-903. PubMed ID: 18088354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium influx constitutes the ionic basis for the maintenance of glutamate-induced extended neuronal depolarization associated with hippocampal neuronal death.
    Limbrick DD; Sombati S; DeLorenzo RJ
    Cell Calcium; 2003 Feb; 33(2):69-81. PubMed ID: 12531183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels.
    Cater HL; Gitterman D; Davis SM; Benham CD; Morrison B; Sundstrom LE
    J Neurochem; 2007 Apr; 101(2):434-47. PubMed ID: 17250683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of calmodulin in neuronal cell death.
    Shirasaki Y; Kanazawa Y; Morishima Y; Makino M
    Brain Res; 2006 Apr; 1083(1):189-95. PubMed ID: 16545345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caspase pathways, neuronal apoptosis, and CNS injury.
    Eldadah BA; Faden AI
    J Neurotrauma; 2000 Oct; 17(10):811-29. PubMed ID: 11063050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-insult activity is a major cause of delayed neuronal death in organotypic hippocampal slices exposed to glutamate.
    Lahtinen H; Autere AM; Paalasmaa P; Lauri SE; Kaila K
    Neuroscience; 2001; 105(1):131-7. PubMed ID: 11483307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels.
    Xiong ZG; Zhu XM; Chu XP; Minami M; Hey J; Wei WL; MacDonald JF; Wemmie JA; Price MP; Welsh MJ; Simon RP
    Cell; 2004 Sep; 118(6):687-98. PubMed ID: 15369669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis.
    Martin LJ; Al-Abdulla NA; Brambrink AM; Kirsch JR; Sieber FE; Portera-Cailliau C
    Brain Res Bull; 1998 Jul; 46(4):281-309. PubMed ID: 9671259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo neuroprotective adaptation of the glutamate/glutamine cycle to neuronal death.
    Ramonet D; Rodríguez MJ; Fredriksson K; Bernal F; Mahy N
    Hippocampus; 2004; 14(5):586-94. PubMed ID: 15301436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution.
    Abulrob A; Tauskela JS; Mealing G; Brunette E; Faid K; Stanimirovic D
    J Neurochem; 2005 Mar; 92(6):1477-86. PubMed ID: 15748165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue inhibitor of metalloproteinase 1 inhibits excitotoxic cell death in neurons.
    Tan HK; Heywood D; Ralph GS; Bienemann A; Baker AH; Uney JB
    Mol Cell Neurosci; 2003 Jan; 22(1):98-106. PubMed ID: 12595242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity.
    Arundine M; Tymianski M
    Cell Calcium; 2003; 34(4-5):325-37. PubMed ID: 12909079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting brain death: time for a new look.
    Saposnik G; Muñoz DG
    Neurology; 2008 Apr; 70(15):1230-1. PubMed ID: 18391154
    [No Abstract]   [Full Text] [Related]  

  • 16. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury.
    Arundine M; Tymianski M
    Cell Mol Life Sci; 2004 Mar; 61(6):657-68. PubMed ID: 15052409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that TRPC1 is involved in hippocampal glutamate-induced cell death.
    Narayanan KL; Irmady K; Subramaniam S; Unsicker K; von Bohlen und Halbach O
    Neurosci Lett; 2008 Dec; 446(2-3):117-22. PubMed ID: 18822346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular targets in cerebral ischemia for developing novel therapeutics.
    Mehta SL; Manhas N; Raghubir R
    Brain Res Rev; 2007 Apr; 54(1):34-66. PubMed ID: 17222914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caspase inhibitors reduce the apoptotic but not necrotic component of kainate injury in primary murine cortical neuronal cultures.
    Glassford A; Lee JE; Xu L; Giffard RG
    Neurol Res; 2002 Dec; 24(8):796-800. PubMed ID: 12500703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection.
    Puyal J; Ginet V; Clarke PG
    Prog Neurobiol; 2013 Jun; 105():24-48. PubMed ID: 23567504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.