These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11063123)

  • 21. Hydraulic and mechanical mis-matching of valve shunts used in the treatment of hydrocephalus: the need for a servo-valve shunt.
    Hakim S
    Dev Med Child Neurol; 1973 Oct; 15(5):646-53. PubMed ID: 4765233
    [No Abstract]   [Full Text] [Related]  

  • 22. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone.
    Medow JE; Luzzio CC
    J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves.
    Inoue T; Kuzu Y; Ogasawara K; Ogawa A
    J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new surgical approach to the treatment of hydrocephalus--application of catheter without valve and connector in ventriculoatrial shunt.
    Xue DL
    J Tongji Med Univ; 1988; 8(2):118-21. PubMed ID: 3249342
    [No Abstract]   [Full Text] [Related]  

  • 25. Shunt failure caused by valve collapse.
    Lundar T; Langmoen IA; Hovind KH
    J Neurol Neurosurg Psychiatry; 1991 Jun; 54(6):559-60. PubMed ID: 1880522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Management with a programmable pressure valve of subdural hematomas caused by a ventriculoperitoneal shunt: case report.
    Kamano S; Nakano Y; Imanishi T; Hattori M
    Surg Neurol; 1991 May; 35(5):381-3. PubMed ID: 2028387
    [No Abstract]   [Full Text] [Related]  

  • 27. Effect of cell phone magnetic fields on adjustable cerebrospinal fluid shunt valves.
    Nomura S; Fujisawa H; Suzuki M
    Surg Neurol; 2005 May; 63(5):467-8. PubMed ID: 15883076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Evolution of Cerebrospinal Fluid Shunts: Advances in Technology and Technique.
    Tomei KL
    Pediatr Neurosurg; 2017; 52(6):369-380. PubMed ID: 28704811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adjustable vs set-pressure valves decrease the risk of proximal shunt obstruction in the treatment of pediatric hydrocephalus.
    McGirt MJ; Buck DW; Sciubba D; Woodworth GF; Carson B; Weingart J; Jallo G
    Childs Nerv Syst; 2007 Mar; 23(3):289-95. PubMed ID: 17106749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A rare case of shunt malfunction attributable to blockage of a Codman-Hakim programmable shunt valve.
    Kurosaki K; Hamada H; Hayashi N; Kurimoto M; Hirashima Y; Endo S
    Childs Nerv Syst; 2002 Apr; 18(3-4):183-5. PubMed ID: 11981632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early programmable valve malfunctions in pediatric hydrocephalus.
    Mangano FT; Menendez JA; Habrock T; Narayan P; Leonard JR; Park TS; Smyth MD
    J Neurosurg; 2005 Dec; 103(6 Suppl):501-7. PubMed ID: 16383248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of vagus nerve stimulator magnet on programmable shunt settings.
    Jandial R; Aryan HE; Hughes SA; Levy ML
    Neurosurgery; 2004 Sep; 55(3):627-9; discussion 629-30. PubMed ID: 15335429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Efficacy and some complications of programmable pressure valve].
    Yonezawa K; Fujita S; Syose Y; Hosoda K; Kawaguchi T
    No Shinkei Geka; 1991 Jun; 19(6):539-45. PubMed ID: 1881523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mechatronic valve in the management of hydrocephalus: methods and performance.
    Momani L; Al-Nuaimy W; Al-Jumaily M; Mallucci C
    Med Biol Eng Comput; 2011 Jan; 49(1):121-32. PubMed ID: 21174160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The importance of hydrostatic valves in the treatment of adult chronic hydrocephalus].
    MascarĂ³s V; Eymann R; Marco J; Kiefer M
    Neurologia; 2001 May; 16(5):204-13. PubMed ID: 11412719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Strata programmable valve for shunt-dependent hydrocephalus: the pediatric experience at a single institution.
    Ahn ES; Bookland M; Carson BS; Weingart JD; Jallo GI
    Childs Nerv Syst; 2007 Mar; 23(3):297-303. PubMed ID: 17028879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing.
    Venkataraman P; Browd SR; Lutz BR
    J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Smartphones and Programmable Shunts: Are These Indispensable Phones Safe and Smart?
    Ozturk S; Cakin H; Kurtuldu H; Kocak O; Erol FS; Kaplan M
    World Neurosurg; 2017 Jun; 102():518-525. PubMed ID: 28342922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seven years of clinical experience with the programmable Codman Hakim valve: a retrospective study of 583 patients.
    Zemack G; Romner B
    J Neurosurg; 2000 Jun; 92(6):941-8. PubMed ID: 10839253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.