These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11063833)

  • 1. Suppression of experimental autoimmune myasthenia gravis in IL-10 gene-disrupted mice is associated with reduced B cells and serum cytotoxicity on mouse cell line expressing AChR.
    Poussin MA; Goluszko E; Hughes TK; Duchicella SI; Christadoss P
    J Neuroimmunol; 2000 Nov; 111(1-2):152-60. PubMed ID: 11063833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HLA-DQ6 transgenic mice resistance to experimental autoimmune myasthenia gravis is linked to reduced acetylcholine receptor-specific IFN-gamma, IL-2 and IL-10 production.
    Poussin MA; Goluszko E; David CS; Franco JU; Christadoss P
    J Autoimmun; 2001 Nov; 17(3):175-80. PubMed ID: 11712854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of IL-5 during primary and secondary immune response to acetylcholine receptor.
    Poussin MA; Goluszko E; Franco JU; Christadoss P
    J Neuroimmunol; 2002 Apr; 125(1-2):51-8. PubMed ID: 11960640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice.
    Ulusoy C; Çavuş F; Yılmaz V; Tüzün E
    Immunol Invest; 2017 Jul; 46(5):490-499. PubMed ID: 28375749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppressed clinical experimental autoimmune myasthenia gravis in bm12 mice is linked to reduced intracellular calcium mobilization and IL-10 and IFN-gamma release by acetylcholine receptor-specific T cells.
    Poussin MA; Fuller CL; Goluszko E; Reyes VE; Braciale VL; Christadoss P
    J Neuroimmunol; 2003 Jan; 134(1-2):104-10. PubMed ID: 12507777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells.
    Wang W; Milani M; Ostlie N; Okita D; Agarwal RK; Caspi RR; Conti-Fine BM
    J Immunol; 2007 Jun; 178(11):7072-80. PubMed ID: 17513756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interleukin 10 aggravates experimental autoimmune myasthenia gravis through inducing Th2 and B cell responses to AChR.
    Zhang GX; Xiao BG; Yu LY; van der Meide PH; Link H
    J Neuroimmunol; 2001 Feb; 113(1):10-8. PubMed ID: 11137572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of B cell deficiency on the immune response to acetylcholine receptor and the development of experimental autoimmune myasthenia gravis.
    Dedhia V; Goluszko E; Wu B; Deng C; Christadoss P
    Clin Immunol Immunopathol; 1998 Jun; 87(3):266-75. PubMed ID: 9646836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells.
    Duan RS; Adikari SB; Huang YM; Link H; Xiao BG
    Neurobiol Dis; 2004 Jul; 16(2):461-7. PubMed ID: 15193302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production.
    Deng C; Goluszko E; Tüzün E; Yang H; Christadoss P
    J Immunol; 2002 Jul; 169(2):1077-83. PubMed ID: 12097416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice.
    Balasa B; Deng C; Lee J; Bradley LM; Dalton DK; Christadoss P; Sarvetnick N
    J Exp Med; 1997 Aug; 186(3):385-91. PubMed ID: 9236190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Morgan BP; Christadoss P
    J Neuroimmunol; 2006 Dec; 181(1-2):29-33. PubMed ID: 17056125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis.
    Schaffert H; Pelz A; Saxena A; Losen M; Meisel A; Thiel A; Kohler S
    Eur J Immunol; 2015 May; 45(5):1339-47. PubMed ID: 25676041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor necrosis factor receptor p55 and p75 deficiency protects mice from developing experimental autoimmune myasthenia gravis.
    Goluszko E; Deng C; Poussin MA; Christadoss P
    J Neuroimmunol; 2002 Jan; 122(1-2):85-93. PubMed ID: 11777546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.
    Wu X; Tuzun E; Saini SS; Wang J; Li J; Aguilera-Aguirre L; Huda R; Christadoss P
    Immunol Lett; 2015 Dec; 168(2):306-12. PubMed ID: 26493475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. B7-1 costimulatory molecule is critical for the development of experimental autoimmune myasthenia gravis.
    Poussin MA; Tüzün E; Goluszko E; Scott BG; Yang H; Franco JU; Christadoss P
    J Immunol; 2003 Apr; 170(8):4389-96. PubMed ID: 12682276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absence of IL-4 facilitates the development of chronic autoimmune myasthenia gravis in C57BL/6 mice.
    Ostlie N; Milani M; Wang W; Okita D; Conti-Fine BM
    J Immunol; 2003 Jan; 170(1):604-12. PubMed ID: 12496449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel animal models of acetylcholine receptor antibody-related myasthenia gravis.
    Tüzün E; Allman W; Ulusoy C; Yang H; Christadoss P
    Ann N Y Acad Sci; 2012 Dec; 1274():133-9. PubMed ID: 23252908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lymphotoxin-alpha deficiency completely protects C57BL/6 mice from developing clinical experimental autoimmune myasthenia gravis.
    Goluszko E; Hjelmström P; Deng C; Poussin MA; Ruddle NH; Christadoss P
    J Neuroimmunol; 2001 Feb; 113(1):109-18. PubMed ID: 11137582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cathepsin S is required for murine autoimmune myasthenia gravis pathogenesis.
    Yang H; Kala M; Scott BG; Goluszko E; Chapman HA; Christadoss P
    J Immunol; 2005 Feb; 174(3):1729-37. PubMed ID: 15661938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.