BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11063911)

  • 1. Exposure of developing oligodendrocytes to cadmium causes HSP72 induction, free radical generation, reduction in glutathione levels, and cell death.
    Almazan G; Liu HN; Khorchid A; Sundararajan S; Martinez-Bermudez AK; Chemtob S
    Free Radic Biol Med; 2000 Nov; 29(9):858-69. PubMed ID: 11063911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catecholamine-induced oligodendrocyte cell death in culture is developmentally regulated and involves free radical generation and differential activation of caspase-3.
    Khorchid A; Fragoso G; Shore G; Almazan G
    Glia; 2002 Dec; 40(3):283-99. PubMed ID: 12420309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion.
    Back SA; Gan X; Li Y; Rosenberg PA; Volpe JJ
    J Neurosci; 1998 Aug; 18(16):6241-53. PubMed ID: 9698317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental differences in HO-induced oligodendrocyte cell death: role of glutathione, mitogen-activated protein kinases and caspase 3.
    Fragoso G; Martínez-Bermúdez AK; Liu HN; Khorchid A; Chemtob S; Mushynski WE; Almazan G
    J Neurochem; 2004 Jul; 90(2):392-404. PubMed ID: 15228596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of energy and redox states in the C6 glioma cells by buthionine sulfoxamine and N-acetylcysteine and the effect on cell survival to cadmium toxicity.
    Yang MS; Yu LC; Pat SW
    Cell Mol Biol (Noisy-le-grand); 2007 Apr; 53(1):56-61. PubMed ID: 17519112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMPA receptor-mediated toxicity in oligodendrocyte progenitors involves free radical generation and activation of JNK, calpain and caspase 3.
    Liu HN; Giasson BI; Mushynski WE; Almazan G
    J Neurochem; 2002 Jul; 82(2):398-409. PubMed ID: 12124441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-acetylcysteine effectively mitigates cadmium-induced oxidative damage and cell death in Leydig cells in vitro.
    Khanna S; Mitra S; Lakhera PC; Khandelwal S
    Drug Chem Toxicol; 2016; 39(1):74-80. PubMed ID: 25885549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel role of vitamin k in preventing oxidative injury to developing oligodendrocytes and neurons.
    Li J; Lin JC; Wang H; Peterson JW; Furie BC; Furie B; Booth SL; Volpe JJ; Rosenberg PA
    J Neurosci; 2003 Jul; 23(13):5816-26. PubMed ID: 12843286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early sensing and gene expression profiling under a low dose of cadmium exposure.
    Hsiao CJ; Stapleton SR
    Biochimie; 2009 Mar; 91(3):329-43. PubMed ID: 19010381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to cadmium as a function of Caco-2 cell differentiation: role of reactive oxygen species in cadmium- but not zinc-induced adaptation mechanisms.
    Cardin GB; Mantha M; Jumarie C
    Biometals; 2009 Oct; 22(5):753-69. PubMed ID: 19294337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of thiols on cadmium-induced expression of metallothionein and other oxidant stress genes in rat lung epithelial cells.
    Gong Q; Hart BA
    Toxicology; 1997 May; 119(3):179-91. PubMed ID: 9152014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants.
    Shaikh ZA; Vu TT; Zaman K
    Toxicol Appl Pharmacol; 1999 Feb; 154(3):256-63. PubMed ID: 9931285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of liver spheroids as an in vitro model for studying induction of the stress response as a marker of chemical toxicity.
    Dilworth C; Hamilton GA; George E; Timbrell JA
    Toxicol In Vitro; 2000 Apr; 14(2):169-76. PubMed ID: 10793295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of glutathione depletion on cadmium-induced metallothionein synthesis, cytotoxicity, and proto-oncogene expression in cultured rat myoblasts.
    Shimizu M; Hochadel JF; Waalkes MP
    J Toxicol Environ Health; 1997 Aug; 51(6):609-21. PubMed ID: 9242231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern of stress protein expression in human lung cell-line A549 after short- or long-term exposure to cadmium.
    Croute F; Beau B; Arrabit C; Gaubin Y; Delmas F; Murat JC; Soleilhavoup JP
    Environ Health Perspect; 2000 Jan; 108(1):55-60. PubMed ID: 10620524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotoxicity of the E(2)-isoprostane 15-E(2t)-IsoP on oligodendrocyte progenitors.
    Brault S; Martinez-Bermudez AK; Roberts J; Cui QL; Fragoso G; Hemdan S; Liu HN; Gobeil F; Quiniou C; Kermorvant-Duchemin E; Lachance C; Almazan G; Varma DR; Chemtob S
    Free Radic Biol Med; 2004 Aug; 37(3):358-66. PubMed ID: 15223069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mediation of cadmium-induced oxidative damage and glucose-6-phosphate dehydrogenase expression through glutathione depletion.
    Xu J; Maki D; Stapleton SR
    J Biochem Mol Toxicol; 2003; 17(2):67-75. PubMed ID: 12717738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection from cadmium cytotoxicity by N-acetylcysteine in LLC-PK1 cells.
    Wispriyono B; Matsuoka M; Igisu H; Matsuno K
    J Pharmacol Exp Ther; 1998 Oct; 287(1):344-51. PubMed ID: 9765355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficient peroxide detoxification underlies the susceptibility of oligodendrocyte progenitors to dopamine toxicity.
    Hemdan S; Almazan G
    Neuropharmacology; 2007 May; 52(6):1385-95. PubMed ID: 17400258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium-induced apoptotic death of human retinal pigment epithelial cells is mediated by MAPK pathway.
    Kalariya NM; Wills NK; Ramana KV; Srivastava SK; van Kuijk FJ
    Exp Eye Res; 2009 Oct; 89(4):494-502. PubMed ID: 19524565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.