BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11063914)

  • 1. Inhibition of vascular NADH/NADPH oxidase activity by thiol reagents: lack of correlation with cellular glutathione redox status.
    Janiszewski M; Pedro MA; Scheffer RC; van Asseldonk JH; Souza LC; da Luz PL; Augusto O; Laurindo FR
    Free Radic Biol Med; 2000 Nov; 29(9):889-99. PubMed ID: 11063914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overestimation of NADH-driven vascular oxidase activity due to lucigenin artifacts.
    Janiszewski M; Souza HP; Liu X; Pedro MA; Zweier JL; Laurindo FR
    Free Radic Biol Med; 2002 Mar; 32(5):446-53. PubMed ID: 11864784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular oxidant stress early after balloon injury: evidence for increased NAD(P)H oxidoreductase activity.
    Souza HP; Souza LC; Anastacio VM; Pereira AC; Junqueira ML; Krieger JE; da Luz PL; Augusto O; Laurindo FR
    Free Radic Biol Med; 2000 Apr; 28(8):1232-42. PubMed ID: 10889453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential response of the NADH oxidase of plasma membranes of rat liver and hepatoma and HeLa cells to thiol reagents.
    Morré DJ; Morré DM
    J Bioenerg Biomembr; 1995 Feb; 27(1):137-44. PubMed ID: 7629045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron spin resonance characterization of the NAD(P)H oxidase in vascular smooth muscle cells.
    Sorescu D; Somers MJ; Lassègue B; Grant S; Harrison DG; Griendling KK
    Free Radic Biol Med; 2001 Mar; 30(6):603-12. PubMed ID: 11295358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sulfonylurea-inhibited NADH oxidase activity of HeLa cell plasma membranes has properties of a protein disulfide-thiol oxidoreductase with protein disulfide-thiol interchange activity.
    Morré DJ; Chueh PJ; Lawler J; Morré DM
    J Bioenerg Biomembr; 1998 Oct; 30(5):477-87. PubMed ID: 9932650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of D(--)-beta-hydroxybutyrate dehydrogenase by modifiers of disulfides, thiols, and vicinal dithiols.
    Phelps DC; Hatefi Y
    Biochemistry; 1981 Feb; 20(3):453-8. PubMed ID: 7213589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete and reversible inhibition of NADPH oxidase in human neutrophils by phenylarsine oxide at a step distal to membrane translocation of the enzyme subunits.
    Le Cabec V; Maridonneau-Parini I
    J Biol Chem; 1995 Feb; 270(5):2067-73. PubMed ID: 7530716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAD(P)H oxidase inhibition improves endothelial function in rat and human blood vessels.
    Hamilton CA; Brosnan MJ; Al-Benna S; Berg G; Dominiczak AF
    Hypertension; 2002 Nov; 40(5):755-62. PubMed ID: 12411473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide.
    Obin M; Shang F; Gong X; Handelman G; Blumberg J; Taylor A
    FASEB J; 1998 May; 12(7):561-9. PubMed ID: 9576483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a NADH/NADPH oxidase in human umbilical vein endothelial cells using electron spin resonance.
    Somers MJ; Burchfield JS; Harrison DG
    Antioxid Redox Signal; 2000; 2(4):779-87. PubMed ID: 11213482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-surface NAD(P)H-oxidase: relationship to trans-plasma membrane NADH-oxidoreductase and a potential source of circulating NADH-oxidase.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):277-88. PubMed ID: 11229532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of angiotensin II on energetics, glucose metabolism and cytosolic NADH/NAD and NADPH/NADP redox in vascular smooth muscle.
    Barron JT; Sasse MF; Nair A
    Mol Cell Biochem; 2004 Jul; 262(1-2):91-9. PubMed ID: 15532713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore.
    McStay GP; Clarke SJ; Halestrap AP
    Biochem J; 2002 Oct; 367(Pt 2):541-8. PubMed ID: 12149099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of glutathione disulfide and the maintenance of reducing equivalents in hypoxic hearts after the infusion of diamide.
    Lund LG; Paraidathathu T; Kehrer JP
    Toxicology; 1994 Nov; 93(2-3):249-62. PubMed ID: 7974518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of thiol modification on brain mitochondrial complex I activity.
    Balijepalli S; Annepu J; Boyd MR; Ravindranath V
    Neurosci Lett; 1999 Sep; 272(3):203-6. PubMed ID: 10505616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen dependence of oxidative stress. Rate of NADPH supply for maintaining the GSH pool during hypoxia.
    Tribble DL; Jones DP
    Biochem Pharmacol; 1990 Feb; 39(4):729-36. PubMed ID: 2306281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidized thiols markedly amplify the vascular response to balloon injury in rabbits through a redox active metal-dependent pathway.
    Janiszewski M; Pasqualucci CA; Souza LC; Pileggi F; da Luz PL; Laurindo FR
    Cardiovasc Res; 1998 Aug; 39(2):327-38. PubMed ID: 9798518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the thyroid NADPH-dependent H2O2 generator by Ca2+: studies with phenylarsine oxide in thyroid plasma membrane.
    Gorin Y; Leseney AM; Ohayon R; Dupuy C; Pommier J; Virion A; Dème D
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):383-8. PubMed ID: 9020870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.