BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11064283)

  • 21. Genotoxic, physiological and immunological effects caused by temperature increase, air exposure or food deprivation in freshwater crayfish Astacus leptodactylus.
    Malev O; Srut M; Maguire I; Stambuk A; Ferrero EA; Lorenzon S; Klobucar GI
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Nov; 152(4):433-43. PubMed ID: 20667483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca2+ and Sr2+ activation properties of skinned muscle fibres with different regulatory systems from crustacea and rat.
    West JM; Stephenson DG
    J Physiol; 1993 Mar; 462():579-96. PubMed ID: 8331593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osmoregulation in Onymacris rugatipennis, a free-ranging tenebrionid beetle from the Namib Desert.
    Naidu SG
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Jul; 129(4):873-85. PubMed ID: 11440873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myofibrillar protein isoform expression is correlated with synaptic efficacy in slow fibres of the claw and leg opener muscles of crayfish and lobster.
    Mykles DL; Medler S; Koenders A; Cooper R
    J Exp Biol; 2002 Feb; 205(Pt 4):513-22. PubMed ID: 11893765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ontogeny of GABA- and glutamate-like immunoreactivity in the embryonic Australian freshwater crayfish, Cherax destructor.
    Foa LC; Cooke IR
    Brain Res Dev Brain Res; 1998 Apr; 107(1):33-42. PubMed ID: 9602044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of extreme pH on the physiology of the Australian 'yabby' Cherax destructor: acute and chronic changes in haemolymph oxygen levels, oxygen consumption and metabolic levels.
    Ellis B; Morris S
    J Exp Biol; 1995; 198(Pt 2):409-18. PubMed ID: 9318039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utilisation of substrates during tethered flight with and without lift generation in the African fruit beetle Pachnoda sinuata (Cetoniinae).
    Auerswald L; Schneider P; GADe G
    J Exp Biol; 1998 Aug; 201(Pt 15):2333-42. PubMed ID: 9662504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical and histological effects of sub-chronic exposure to atrazine in crayfish Cherax destructor.
    Stara A; Kouba A; Velisek J
    Chem Biol Interact; 2018 Aug; 291():95-102. PubMed ID: 29908168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-density lipoprotein associated with secondary vitellogenesis in the hemolymph of the crayfish Cherax quadricarinatus.
    Yehezkel G; Chayoth R; Abdu U; Khalaila I; Sagi A
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Nov; 127(3):411-21. PubMed ID: 11126772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amino acids and osmolarity in honeybee drone haemolymph.
    Leonhard B; Crailsheim K
    Amino Acids; 1999; 17(2):195-205. PubMed ID: 10524277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ca2+- and Sr2+-activation properties of muscle fibres from a muscle receptor organ and the associated extrafusal muscle of the crab and crayfish.
    Parkinson AL; Bakker AJ; Head SI
    J Muscle Res Cell Motil; 2000; 21(7):663-71. PubMed ID: 11227793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of calcium during contraction and relaxation of crayfish skeletal muscle fibre.
    Poledna J; Simurdová A
    Gen Physiol Biophys; 1992 Oct; 11(5):427-39. PubMed ID: 1291445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Free amino acids of hemolymph during pubertal molting and senescence in Spaeroma serratum (Isopoda, Flabellifera].
    Charmantier G; Voss-Foucart MF; Trilles JP; Jeuniaux Ch
    Arch Int Physiol Biochim; 1975 Aug; 83(3):481-91. PubMed ID: 54128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced reappearance of fast fibers in regenerating crayfish claw closer muscles.
    Govind CK; Pearce J
    Dev Biol; 1985 Jan; 107(1):206-12. PubMed ID: 3155512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorus fractions of crayfish haemolymph, serum and haemocyanin.
    Gondko R; Helszer Z; Adamska M
    Acta Biochim Pol; 1985; 32(3):251-7. PubMed ID: 4090857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemocyanin from the Australian freshwater crayfish Cherax destructor. Characterization of a dimeric subunit and its involvement in the formation of the 25S component.
    Jeffrey PD; Shaw DC; Treacy GB
    Biochemistry; 1978 Jul; 17(15):3078-84. PubMed ID: 698187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Haemolymph characteristics of a copper-tolerant decapod Orconectes virilis (Hagen) (Astacidae, Crustacea).
    Naich M; Alikhan MA
    Arch Int Physiol Biochim; 1987 Jun; 95(2):133-9. PubMed ID: 2444180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological compensation in unilateral eyestalk ablated crayfish, Cherax quadricarinatus.
    Meade M; Watts S
    J Exp Zool; 2001 Feb; 289(3):184-9. PubMed ID: 11170015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. L-thyroxine (T4) elevates the free amino acid pool of haemolymph plasma of tasar silkworm, Antheraea mylitta drury (Lepidoptera: Saturniidae).
    Reddy KD; Chaudhuri A; Thangavelu K
    Horm Metab Res; 1994 Dec; 26(12):570-3. PubMed ID: 7705760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemocyanin from the Australian freshwater crayfish Cherax destructor. Subunit heterogeneity.
    Murray AC; Jeffrey PD
    Biochemistry; 1974 Aug; 13(18):3667-71. PubMed ID: 4852240
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.