These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11064412)

  • 1. Applying the uniform resampling (URS) algorithm to a lissajous trajectory: fast image reconstruction with optimal gridding.
    Moriguchi H; Wendt M; Duerk JL
    Magn Reson Med; 2000 Nov; 44(5):766-81. PubMed ID: 11064412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of undersampled non-Cartesian data sets using pseudo-Cartesian GRAPPA in conjunction with GROG.
    Seiberlich N; Breuer F; Heidemann R; Blaimer M; Griswold M; Jakob P
    Magn Reson Med; 2008 May; 59(5):1127-37. PubMed ID: 18429026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automated gridding reconstruction for non-Cartesian x-space magnetic particle imaging.
    Ozaslan AA; Alacaoglu A; Demirel OB; Çukur T; Saritas EU
    Phys Med Biol; 2019 Aug; 64(16):165018. PubMed ID: 31342922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trajectory analysis for field free line magnetic particle imaging.
    Top CB; Güngör A; Ilbey S; Güven HE
    Med Phys; 2019 Apr; 46(4):1592-1607. PubMed ID: 30695100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An augmented Lagrangian based compressed sensing reconstruction for non-Cartesian magnetic resonance imaging without gridding and regridding at every iteration.
    Akçakaya M; Nam S; Basha TA; Kawaji K; Tarokh V; Nezafat R
    PLoS One; 2014; 9(9):e107107. PubMed ID: 25215945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient gridding reconstruction method for multishot non-Cartesian imaging with correction of off-resonance artifacts.
    Meng Y; Lei H
    Magn Reson Med; 2010 Jun; 63(6):1691-7. PubMed ID: 20512873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding.
    Benkert T; Tian Y; Huang C; DiBella EVR; Chandarana H; Feng L
    Magn Reson Med; 2018 Jul; 80(1):286-293. PubMed ID: 29193380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An algorithm for numerical calculation of the k-space data-weighting for polarly sampled trajectories: application to spiral imaging.
    Papadakis NG; Carpenter TA; Hall LD
    Magn Reson Imaging; 1997; 15(7):785-94. PubMed ID: 9309609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial fourier shells trajectory for non-cartesian MRI.
    Tao S; Shu Y; Trzasko JD; Huston J; Bernstein MA
    Phys Med Biol; 2019 Feb; 64(4):04NT01. PubMed ID: 30625455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative Next-Neighbor Regridding (INNG): improved reconstruction from nonuniformly sampled k-space data using rescaled matrices.
    Moriguchi H; Duerk JL
    Magn Reson Med; 2004 Feb; 51(2):343-52. PubMed ID: 14755660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of generalized rosette trajectory for compressed sensing MRI.
    Li Y; Yang R; Zhang C; Zhang J; Jia S; Zhou Z
    Med Phys; 2015 Sep; 42(9):5530-44. PubMed ID: 26329000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K-space trajectory mapping and its application for ultrashort Echo time imaging.
    Latta P; Starčuk Z; Gruwel ML; Weber MH; Tomanek B
    Magn Reson Imaging; 2017 Feb; 36():68-76. PubMed ID: 27742433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient MR image reconstruction method for arbitrary K-space trajectories without density compensation.
    Song J; Liu QH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3767-70. PubMed ID: 17946203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time cardiac MRI with radial acquisition and k-space variant reduced-FOV reconstruction.
    Li YY; Rashid S; Cheng YJ; Schapiro W; Gliganic K; Yamashita AM; Tang J; Grgas M; Mendez M; Haag E; Pang J; Stoeckel B; Leidecker C; Cao JJ
    Magn Reson Imaging; 2018 Nov; 53():98-104. PubMed ID: 30036652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG).
    Seiberlich N; Breuer FA; Blaimer M; Barkauskas K; Jakob PM; Griswold MA
    Magn Reson Med; 2007 Dec; 58(6):1257-65. PubMed ID: 17969027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified block uniform resampling (BURS) algorithm using truncated singular value decomposition: fast accurate gridding with noise and artifact reduction.
    Moriguchi H; Duerk JL
    Magn Reson Med; 2001 Dec; 46(6):1189-201. PubMed ID: 11746586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First experimental comparison between the Cartesian and the Lissajous trajectory for magnetic particle imaging.
    Werner F; Gdaniec N; Knopp T
    Phys Med Biol; 2017 May; 62(9):3407-3421. PubMed ID: 28218613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CUDA-based reverse gridding algorithm for MR reconstruction.
    Yang J; Feng C; Zhao D
    Magn Reson Imaging; 2013 Feb; 31(2):313-23. PubMed ID: 22898698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiral imaging: a critical appraisal.
    Block KT; Frahm J
    J Magn Reson Imaging; 2005 Jun; 21(6):657-68. PubMed ID: 15906329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform.
    Sarty GE; Bennett R; Cox RW
    Magn Reson Med; 2001 May; 45(5):908-15. PubMed ID: 11323818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.