These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11064657)

  • 1. Directionality of extruded lithium fluoride thermoluminescent dosemeters in a cobalt-60 beam.
    Wagner GS; Batey SE; Mosleh-Shirazi MA
    Br J Radiol; 2000 Sep; 73(873):1007-9. PubMed ID: 11064657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the effects of exposure to light in Harshaw LiF:Mg,Ti and LiF:Mg,Cu,P.
    Baker ST; Gilvin PJ
    Radiat Prot Dosimetry; 2007; 125(1-4):258-60. PubMed ID: 16980318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating two extremity dosemeters based on LiF:Mg,Ti or LiF:Mg,Cu,P.
    Luo LZ; Velbeck KJ; Rotunda JE
    Radiat Prot Dosimetry; 2002; 101(1-4):211-6. PubMed ID: 12382737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammography dosimetry using an in-house developed polymethyl methacrylate phantom.
    Sharma R; Sharma SD; Mayya YS; Chourasiya G
    Radiat Prot Dosimetry; 2012 Aug; 151(2):379-85. PubMed ID: 22232773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ENERGY RESPONSE FACTOR of BeO DOSEMETER CHIPS: A MONTE CARLO SIMULATION AND GENERAL CAVITY THEORY STUDY.
    Sarigul N; Surucu M; Aydogan B
    Radiat Prot Dosimetry; 2019 Dec; 185(3):303-309. PubMed ID: 30806472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy response of GR-200A thermoluminescence dosemeters to 60Co and to monoenergetic synchrotron radiation in the energy range 28-40 keV.
    Emiro F; Di Lillo F; Mettivier G; Fedon C; Longo R; Tromba G; Russo P
    Radiat Prot Dosimetry; 2016 Jan; 168(1):40-5. PubMed ID: 25737582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IAEA-WHO cobalt-60 teletherapy dosimetry service using mailed LiF dosemeters. A survey of results obtaining during 1970-75.
    Eisenlohr HH; Jayaraman S
    Phys Med Biol; 1977 Jan; 22(1):18-28. PubMed ID: 840894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoluminescent responses of Li3B7O12:Cu to proton beam.
    Koba Y; Shinsho K; Tamatsu S; Fukuda S; Wakabayashi G
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):437-40. PubMed ID: 24759914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of high ambient radon on thermoluminescence dosimetry readings.
    Harvey JA; Kearfott KJ
    Radiat Prot Dosimetry; 2011 Nov; 147(4):491-7. PubMed ID: 21177272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.
    Gambarini G; Magni D; Regazzoni V; Borroni M; Carrara M; Pignoli E; Burian J; Marek M; Klupak V; Viererbl L
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):422-7. PubMed ID: 24435913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculated energy response correction factors for LiF thermoluminescent dosemeters employed in the seventh EULEP dosimetry intercomparison.
    Zoetelief J; Jansen JT
    Phys Med Biol; 1997 Aug; 42(8):1491-504. PubMed ID: 9279901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of high ambient temperature on glow-peak fading properties of LiF:Mg,Ti thermoluminescent dosemeters.
    Harvey JA; Kearfott KJ
    Radiat Prot Dosimetry; 2012 Apr; 149(2):109-15. PubMed ID: 21733861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batch homogeneity of LiF(Mg,Cu,P)-GR200 and LiF(Mg,Cu,P)-MCP-NS TL detectors for use as extremity dosemeters at ENEA personal dosimetry service.
    Mariotti F; Uleri G; Fantuzzi E
    Radiat Prot Dosimetry; 2006; 120(1-4):283-8. PubMed ID: 16702241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison on characteristics of radiophotoluminescent glass dosemeters and thermoluminescent dosemeters.
    Hsu SM; Yeh SH; Lin MS; Chen WL
    Radiat Prot Dosimetry; 2006; 119(1-4):327-31. PubMed ID: 16709718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity loss of Lif:Mg,Cu,P thermoluminescence dosemeters caused by oven annealing.
    Lüpke M; Goblet F; Polivka B; Seifert H
    Radiat Prot Dosimetry; 2006; 121(2):195-201. PubMed ID: 16464837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of megavolt radiation dosimetry using thermoluminescent lithium fluoride.
    Rudén BI; Bengtsson LG
    Acta Radiol Ther Phys Biol; 1977 Apr; 16(2):157-76. PubMed ID: 405844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of a multipurpose thyroid phantom for medical dosimetry and calibration.
    Mehdizadeh Naderi S; Sina S; Karimipoorfard M; Lotfalizadeh F; Entezarmahdi M; Moradi H; Faghihi R
    Radiat Prot Dosimetry; 2016 Mar; 168(4):503-8. PubMed ID: 26124260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy response of LiF and Mg2SiO4 TLDs to 10-150 keV monoenergetic photons.
    Konnai A; Nariyama N; Ohnishi S; Odano N
    Radiat Prot Dosimetry; 2005; 115(1-4):334-6. PubMed ID: 16381741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The low- and high-temperature response of lithium fluoride dosemeters to X-rays.
    Budd T; Marshall M; Peaple LH; Douglas JA
    Phys Med Biol; 1979 Jan; 24(1):71-80. PubMed ID: 432275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of the optical density and the thermoluminescent response of LiF:Mg,Ti exposed to high doses of 60Co gamma rays.
    Montaño-García C; Gamboa-deBuen I
    Radiat Prot Dosimetry; 2006; 119(1-4):230-2. PubMed ID: 16644946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.