These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11065184)

  • 21. Rapid elimination of cefaclor from the cerebrospinal fluid is mediated by a benzylpenicillin-sensitive mechanism distinct from organic anion transporter 3.
    Kuroda M; Kusuhara H; Endou H; Sugiyama Y
    J Pharmacol Exp Ther; 2005 Aug; 314(2):855-61. PubMed ID: 15894718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active transport properties of porcine choroid plexus cells in culture.
    Hakvoort A; Haselbach M; Galla HJ
    Brain Res; 1998 Jun; 795(1-2):247-56. PubMed ID: 9622643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of probenecid on cerebral and cisternal cerebrospinal fluid lactate content.
    MacMillan V
    J Cereb Blood Flow Metab; 1987 Feb; 7(1):118-23. PubMed ID: 2433297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent insights into a new hydrodynamics of the cerebrospinal fluid.
    Bulat M; Klarica M
    Brain Res Rev; 2011 Jan; 65(2):99-112. PubMed ID: 20817024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blood-brain and CSF barriers to penicillin and related organic acids.
    Fishman RA
    Arch Neurol; 1966 Aug; 15(2):113-24. PubMed ID: 5945968
    [No Abstract]   [Full Text] [Related]  

  • 26. Zidovudine transport within the rabbit brain during intracerebroventricular administration and the effect of probenecid.
    Wang Y; Wei Y; Sawchuk RJ
    J Pharm Sci; 1997 Dec; 86(12):1484-90. PubMed ID: 9423165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probenecid-induced accumulation of cyclic nucleotides, 5-hydroxyindoleacetic acid, and homovanillic acid in cisternal spinal fluid of genetically nervous dogs.
    Angel C; Deluca DC; Murphree OD
    Biol Psychiatry; 1976 Dec; 11(6):743-53. PubMed ID: 187258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of cerebrospinal fluid pressure on dural venous pressure in young rats.
    Jones HC; Gratton JA
    J Neurosurg; 1989 Jul; 71(1):119-23. PubMed ID: 2738629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport of imipenem, a novel carbapenem antibiotic, in the rat central nervous system.
    Suzuki H; Sawada Y; Sugiyama Y; Iga T; Hanano M; Spector R
    J Pharmacol Exp Ther; 1989 Sep; 250(3):979-84. PubMed ID: 2506338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Starling resistors, autoregulation of cerebral perfusion and the pathogenesis of idiopathic intracranial hypertension.
    DE Simone R; Ranieri A; Bonavita V
    Panminerva Med; 2017 Mar; 59(1):76-89. PubMed ID: 27598891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facilitated transport of cefodizime into the rat central nervous system.
    Matsushita H; Suzuki H; Sugiyama Y; Sawada Y; Iga T; Kawaguchi Y; Hanano M
    J Pharmacol Exp Ther; 1991 Nov; 259(2):620-5. PubMed ID: 1941610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental effects of steroids and steroid withdrawal on cerebrospinal fluid absorption.
    Johnston I; Gilday DL; Hendrick EB
    J Neurosurg; 1975 Jun; 42(6):690-5. PubMed ID: 1141965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of cationic drug-sensitive transport systems at the blood-cerebrospinal fluid barrier in para-tyramine elimination from rat brain.
    Akanuma SI; Yamazaki Y; Kubo Y; Hosoya KI
    Fluids Barriers CNS; 2018 Jan; 15(1):1. PubMed ID: 29307307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of methotrexate CNS distribution in different species - influence of disease conditions.
    Westerhout J; van den Berg DJ; Hartman R; Danhof M; de Lange EC
    Eur J Pharm Sci; 2014 Jun; 57():11-24. PubMed ID: 24462766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Movement of Cerebrospinal Fluid and Its Relationship with Substances Behavior in Cerebrospinal and Interstitial Fluid.
    Klarica M; Radoš M; Orešković D
    Neuroscience; 2019 Aug; 414():28-48. PubMed ID: 31279048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The transport of gentamicin in the choroid plexus and cerebrospinal fluid.
    Spector R
    J Pharmacol Exp Ther; 1975 Jul; 194(1):82-8. PubMed ID: 1151757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of distribution of 3H-inulin between the cerebrospinal fluid compartments.
    Vladić A; Klarica M; Bulat M
    Brain Res; 2009 Jan; 1248():127-35. PubMed ID: 19007752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo evidence for carrier-mediated efflux transport of 3'-azido-3'-deoxythymidine and 2',3'-dideoxyinosine across the blood-brain barrier via a probenecid-sensitive transport system.
    Takasawa K; Terasaki T; Suzuki H; Sugiyama Y
    J Pharmacol Exp Ther; 1997 Apr; 281(1):369-75. PubMed ID: 9103519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of cerebrospinal fluid formation and absorption by ventriculo-cisternal perfusion: what is really measured?
    Orešković D; Klarica M
    Croat Med J; 2014 Aug; 55(4):317-27. PubMed ID: 25165046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carrier-mediated uptake of H2-receptor antagonists by the rat choroid plexus: involvement of rat organic anion transporter 3.
    Nagata Y; Kusuhara H; Hirono S; Endou H; Sugiyama Y
    Drug Metab Dispos; 2004 Sep; 32(9):1040-7. PubMed ID: 15319347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.