These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11065273)

  • 41. Surfactant-modified yeast whole-cell biocatalyst displaying lipase on cell surface for enzymatic production of structured lipids in organic media.
    Hama S; Yoshida A; Nakashima K; Noda H; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):537-43. PubMed ID: 20336291
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases.
    Palomo JM; Peñas MM; Fernández-Lorente G; Mateo C; Pisabarro AG; Fernández-Lafuente R; Ramírez L; Guisán JM
    Biomacromolecules; 2003; 4(2):204-10. PubMed ID: 12625713
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of a reactive extraction process for biodiesel production using a lipase immobilized on magnetic nanostructures.
    Dussan KJ; Cardona CA; Giraldo OH; Gutiérrez LF; Pérez VH
    Bioresour Technol; 2010 Dec; 101(24):9542-9. PubMed ID: 20716486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. "Sweet silicones": biocatalytic reactions to form organosilicon carbohydrate macromers.
    Sahoo B; Brandstadt KF; Lane TH; Gross RA
    Org Lett; 2005 Sep; 7(18):3857-60. PubMed ID: 16119916
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regioselective enzymatic synthesis of non-steroidal anti-inflammatory drugs containing glucose in organic media.
    Wang N; Liu BK; Wu Q; Wang JL; Lin XF
    Biotechnol Lett; 2005 Jun; 27(11):789-92. PubMed ID: 16086261
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reversible derivatization to enhance enzymatic synthesis: chemoenzymatic synthesis of doxorubicin-14-O-esters.
    Cotterill IC; Rich JO; Scholten MD; Mozhaeva L; Michels PC
    Biotechnol Bioeng; 2008 Oct; 101(3):435-40. PubMed ID: 18478562
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biocatalytic synthesis of ascorbyl esters and their biotechnological applications.
    Karmee SK
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1013-22. PubMed ID: 19030854
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media.
    Pan S; Liu X; Xie Y; Yi Y; Li C; Yan Y; Liu Y
    Bioresour Technol; 2010 Dec; 101(24):9822-4. PubMed ID: 20713309
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel ethoxylated inositol derivatives--hybrid carbohydrate/oligoethylene oxide surfactants.
    Catanoiu G; Blunk D; Stubenrauch C
    J Colloid Interface Sci; 2012 Apr; 371(1):82-8. PubMed ID: 22285096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics and mechanisms of reactions catalysed by immobilized lipases.
    Malcata FX; Reyes HR; Garcia HS; Hill CG; Amundson CH
    Enzyme Microb Technol; 1992 Jun; 14(6):426-46. PubMed ID: 1368796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of enzymes to the synthesis of surfactants.
    Sarney DB; Vulfson EN
    Trends Biotechnol; 1995 May; 13(5):164-72. PubMed ID: 7786494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bio-based surfactants: enzymatic functionalization and production from renewable resources.
    Agger JW; Zeuner B
    Curr Opin Biotechnol; 2022 Dec; 78():102842. PubMed ID: 36371893
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of surface active compounds by biocatalyst technology.
    Zinjarde SS; Ghosh M
    Adv Exp Med Biol; 2010; 672():289-303. PubMed ID: 20545291
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polymers and surfactants on the basis of renewable resources.
    Warwel S; Brüse F; Demes C; Kunz M; Rüsch gen Klaas M
    Chemosphere; 2001 Apr; 43(1):39-48. PubMed ID: 11235676
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immobilised enzymes in biorenewables production.
    Franssen MC; Steunenberg P; Scott EL; Zuilhof H; Sanders JP
    Chem Soc Rev; 2013 Aug; 42(15):6491-533. PubMed ID: 23519171
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multicomponent cascade reactions of unprotected carbohydrates and amino acids.
    Voigt B; Linke M; Mahrwald R
    Org Lett; 2015 Jun; 17(11):2606-9. PubMed ID: 25952697
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemo-enzymatic synthesis of arginine-based gemini surfactants.
    Piera E; Infante MR; Clapés P
    Biotechnol Bioeng; 2000 Nov; 70(3):323-31. PubMed ID: 10992236
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Latest Trends in Lipase-Catalyzed Synthesis of Ester Carbohydrate Surfactants: From Key Parameters to Opportunities and Future Development.
    Spalletta A; Joly N; Martin P
    Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determining optimum conditions for lipase-catalyzed synthesis of triethanolamine (TEA)-based esterquat cationic surfactant by a Taguchi robust design method.
    Masoumi HR; Kassim A; Basri M; Abdullah DK
    Molecules; 2011 Jun; 16(6):4672-80. PubMed ID: 21642941
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of glycomonomers via biocatalytic methods.
    Adharis A; Loos K
    Methods Enzymol; 2019; 627():215-247. PubMed ID: 31630741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.