These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 11065361)
41. The Ehling-Schulz M; Lereclus D; Koehler TM Microbiol Spectr; 2019 May; 7(3):. PubMed ID: 31111815 [TBL] [Abstract][Full Text] [Related]
42. Plasmid-associated sensitivity of Bacillus thuringiensis to UV light. Benoit TG; Wilson GR; Bull DL; Aronson AI Appl Environ Microbiol; 1990 Aug; 56(8):2282-6. PubMed ID: 2119568 [TBL] [Abstract][Full Text] [Related]
43. Characterization of a small PlcR-regulated gene co-expressed with cereolysin O. Brillard J; Lereclus D BMC Microbiol; 2007 Jun; 7():52. PubMed ID: 17555563 [TBL] [Abstract][Full Text] [Related]
44. Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Pomerantsev AP; Kalnin KV; Osorio M; Leppla SH Infect Immun; 2003 Nov; 71(11):6591-606. PubMed ID: 14573681 [TBL] [Abstract][Full Text] [Related]
46. Strategy for identification of Bacillus cereus and Bacillus thuringiensis strains closely related to Bacillus anthracis. Daffonchio D; Raddadi N; Merabishvili M; Cherif A; Carmagnola L; Brusetti L; Rizzi A; Chanishvili N; Visca P; Sharp R; Borin S Appl Environ Microbiol; 2006 Feb; 72(2):1295-301. PubMed ID: 16461679 [TBL] [Abstract][Full Text] [Related]
47. Conjugal transfer between Bacillus thuringiensis and Bacillus cereus strains is not directly correlated with growth of recipient strains. Santos CA; Vilas-Bôas GT; Lereclus D; Suzuki MT; Angelo EA; Arantes OM J Invertebr Pathol; 2010 Oct; 105(2):171-5. PubMed ID: 20600090 [TBL] [Abstract][Full Text] [Related]
48. Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Asano SI; Nukumizu Y; Bando H; Iizuka T; Yamamoto T Appl Environ Microbiol; 1997 Mar; 63(3):1054-7. PubMed ID: 9055420 [TBL] [Abstract][Full Text] [Related]
49. Biosurfactant production and surface translocation are regulated by PlcR in Bacillus cereus ATCC 14579 under low-nutrient conditions. Hsueh YH; Somers EB; Lereclus D; Ghelardi E; Wong AC Appl Environ Microbiol; 2007 Nov; 73(22):7225-31. PubMed ID: 17921286 [TBL] [Abstract][Full Text] [Related]
50. Turning off Bacillus cereus quorum sensing system with peptidic analogs. Yehuda A; Slamti L; Bochnik-Tamir R; Malach E; Lereclus D; Hayouka Z Chem Commun (Camb); 2018 Aug; 54(70):9777-9780. PubMed ID: 30105347 [TBL] [Abstract][Full Text] [Related]
51. Activity of spores and extracellular proteins from six Cry+ strains and a Cry- strain of Bacillus thuringiensis subsp. kurstaki against the western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae). Kalmykova G; Burtseva L; Milne R; van Frankenhuyzen K Can J Microbiol; 2009 May; 55(5):536-43. PubMed ID: 19483782 [TBL] [Abstract][Full Text] [Related]
52. Pathogenicity of intrathoracically administrated Bacillus thuringiensis spores in Blatta orientalis. Porcar M; Navarro L; Jiménez-Peydró R J Invertebr Pathol; 2006 Sep; 93(1):63-6. PubMed ID: 16777139 [TBL] [Abstract][Full Text] [Related]
53. Enterotoxigenicity and cytotoxicity of Bacillus thuringiensis strains and development of a process for Cry1Ac production. Yang CY; Pang JC; Kao SS; Tsen HY J Agric Food Chem; 2003 Jan; 51(1):100-5. PubMed ID: 12502392 [TBL] [Abstract][Full Text] [Related]
54. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. Ankolekar C; Rahmati T; Labbé RG Int J Food Microbiol; 2009 Jan; 128(3):460-6. PubMed ID: 19027973 [TBL] [Abstract][Full Text] [Related]
55. Evolution and some functions of the NprR-NprRB quorum-sensing system in the Bacillus cereus group. Rocha J; Flores V; Cabrera R; Soto-Guzmán A; Granados G; Juaristi E; Guarneros G; de la Torre M Appl Microbiol Biotechnol; 2012 May; 94(4):1069-78. PubMed ID: 22159892 [TBL] [Abstract][Full Text] [Related]
56. Comparative Genomics of Zheng J; Gao Q; Liu L; Liu H; Wang Y; Peng D; Ruan L; Raymond B; Sun M mBio; 2017 Aug; 8(4):. PubMed ID: 28790205 [TBL] [Abstract][Full Text] [Related]
57. Bacillus cereus and Bacillus thuringiensis spores in Korean rice: prevalence and toxin production as affected by production area and degree of milling. Kim B; Bang J; Kim H; Kim Y; Kim BS; Beuchat LR; Ryu JH Food Microbiol; 2014 Sep; 42():89-94. PubMed ID: 24929722 [TBL] [Abstract][Full Text] [Related]
58. Human cell exposure assays of Bacillus thuringiensis commercial insecticides: production of Bacillus cereus-like cytolytic effects from outgrowth of spores. Tayabali AF; Seligy VL Environ Health Perspect; 2000 Oct; 108(10):919-30. PubMed ID: 11049810 [TBL] [Abstract][Full Text] [Related]
59. Efficient transformation of Bacillus thuringiensis and B. cereus via electroporation: transformation of acrystalliferous strains with a cloned delta-endotoxin gene. Schurter W; Geiser M; Mathé D Mol Gen Genet; 1989 Jul; 218(1):177-81. PubMed ID: 2550762 [TBL] [Abstract][Full Text] [Related]
60. Expression of the Bacillus thuringiensis Chen H; Verplaetse E; Slamti L; Lereclus D Microbiol Spectr; 2022 Aug; 10(4):e0120522. PubMed ID: 35727045 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]