These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 11065361)
81. Whole genome sequence of Bacillus thuringiensis ATCC 10792 and improved discrimination of Bacillus thuringiensis from Bacillus cereus group based on novel biomarkers. Chelliah R; Wei S; Park BJ; Rubab M; Banan-Mwine Dalirii E; Barathikannan K; Jin YG; Oh DH Microb Pathog; 2019 Apr; 129():284-297. PubMed ID: 30753888 [TBL] [Abstract][Full Text] [Related]
82. gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group. La Duc MT; Satomi M; Agata N; Venkateswaran K J Microbiol Methods; 2004 Mar; 56(3):383-94. PubMed ID: 14967230 [TBL] [Abstract][Full Text] [Related]
83. Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin. Økstad OA; Gominet M; Purnelle B; Rose M; Lereclus D; Kolstø AB Microbiology (Reading); 1999 Nov; 145 ( Pt 11)():3129-3138. PubMed ID: 10589720 [TBL] [Abstract][Full Text] [Related]
84. Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella. Raymond B; Elliot SL; Ellis RJ J Invertebr Pathol; 2008 Jul; 98(3):307-13. PubMed ID: 18336832 [TBL] [Abstract][Full Text] [Related]
85. Mob/oriT, a mobilizable site-specific recombination system for unmarked genetic manipulation in Bacillus thuringiensis and Bacillus cereus. Wang P; Zhu Y; Zhang Y; Zhang C; Xu J; Deng Y; Peng D; Ruan L; Sun M Microb Cell Fact; 2016 Jun; 15(1):108. PubMed ID: 27286821 [TBL] [Abstract][Full Text] [Related]
86. Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Lücking G; Dommel MK; Scherer S; Fouet A; Ehling-Schulz M Microbiology (Reading); 2009 Mar; 155(Pt 3):922-931. PubMed ID: 19246763 [TBL] [Abstract][Full Text] [Related]
87. LETHALITY FOR MICE OF VEGETATIVE AND SPORE FORMS OF BACILLUS CEREUS AND BACILLUS CEREUS-LIKE INSECT PATHOGENS INJECTED INTRAPERITONEALLY AND SUBCUTANEOUSLY. LAMANNA C; JONES L J Bacteriol; 1963 Mar; 85(3):532-5. PubMed ID: 14042929 [TBL] [Abstract][Full Text] [Related]
88. Genetic relationships between sympatric populations of Bacillus cereus and Bacillus thuringiensis, as revealed by rep-PCR genomic fingerprinting. Peruca AP; Vilas-Bôas GT; Arantes OM Mem Inst Oswaldo Cruz; 2008 Aug; 103(5):497-500. PubMed ID: 18797766 [TBL] [Abstract][Full Text] [Related]
89. A Sporulation-Independent Way of Life for Bacillus thuringiensis in the Late Stages of an Infection. Toukabri H; Lereclus D; Slamti L mBio; 2023 Jun; 14(3):e0037123. PubMed ID: 37129506 [TBL] [Abstract][Full Text] [Related]
90. Extended genetic analysis of Brazilian isolates of Bacillus cereus and Bacillus thuringiensis. Zahner V; Silva AC; Moraes GP; McIntosh D; Filippis Id Mem Inst Oswaldo Cruz; 2013 Feb; 108(1):65-72. PubMed ID: 23440117 [TBL] [Abstract][Full Text] [Related]
91. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Wilson MK; Abergel RJ; Raymond KN; Arceneaux JE; Byers BR Biochem Biophys Res Commun; 2006 Sep; 348(1):320-5. PubMed ID: 16875672 [TBL] [Abstract][Full Text] [Related]
92. Kinetics of plasmid transfer among Bacillus cereus group strains within lepidopteran larvae. Yuan YM; Hu XM; Liu HZ; Hansen BM; Yan JP; Yuan ZM Arch Microbiol; 2007 Jun; 187(6):425-31. PubMed ID: 17216168 [TBL] [Abstract][Full Text] [Related]
93. Novel motB as a potential predictive tool for identification of B. cereus, B. thuringiensis and differentiation from other Bacillus species by triplex real-time PCR. Chelliah R; Wei S; Park BJ; Kim SH; Park DS; Kim SH; Hwan KS; Oh DH Microb Pathog; 2017 Oct; 111():22-27. PubMed ID: 28778821 [TBL] [Abstract][Full Text] [Related]
94. Characterization of Mexican Bacillus thuringiensis strains toxic for lepidopteran and coleopteran larvae. Tamez-Guerra P; Iracheta MM; Pereyra-Alférez B; Galán-Wong LJ; Gomez-Flores R; Tamez-Guerra RS; Rodríguez-Padilla C J Invertebr Pathol; 2004; 86(1-2):7-18. PubMed ID: 15145246 [TBL] [Abstract][Full Text] [Related]
95. Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis. de Been M; Francke C; Moezelaar R; Abee T; Siezen RJ Microbiology (Reading); 2006 Oct; 152(Pt 10):3035-3048. PubMed ID: 17005984 [TBL] [Abstract][Full Text] [Related]
96. Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Vilas-Boas G; Sanchis V; Lereclus D; Lemos MV; Bourguet D Appl Environ Microbiol; 2002 Mar; 68(3):1414-24. PubMed ID: 11872495 [TBL] [Abstract][Full Text] [Related]
97. Isolation, geographical diversity and insecticidal activity of Bacillus thuringiensis from soils in Spain. Quesada-Moraga E; García-Tóvar E; Valverde-García P; Santiago-Alvarez C Microbiol Res; 2004; 159(1):59-71. PubMed ID: 15160608 [TBL] [Abstract][Full Text] [Related]
98. The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579. Carlson CR; Johansen T; Kolstø AB FEMS Microbiol Lett; 1996 Aug; 141(2-3):163-7. PubMed ID: 8768518 [TBL] [Abstract][Full Text] [Related]