These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11066093)

  • 41. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.
    Gamer LW; Cox KA; Small C; Rosen V
    Dev Biol; 2001 Jan; 229(2):407-20. PubMed ID: 11203700
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fgf8 transcripts are located in tendons during embryonic chick limb development.
    Edom-Vovard F; Bonnin M; Duprez D
    Mech Dev; 2001 Oct; 108(1-2):203-6. PubMed ID: 11578876
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Frizzled-7 and limb mesenchymal chondrogenesis: effect of misexpression and involvement of N-cadherin.
    Tufan AC; Daumer KM; Tuan RS
    Dev Dyn; 2002 Mar; 223(2):241-53. PubMed ID: 11836788
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ectopic Myf5 or MyoD prevents the neuronal differentiation program in addition to inducing skeletal muscle differentiation, in the chick neural tube.
    Delfini MC; Duprez D
    Development; 2004 Feb; 131(4):713-23. PubMed ID: 14724123
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mesenchymal stem cells reside within the connective tissues of many organs.
    Young HE; Mancini ML; Wright RP; Smith JC; Black AC; Reagan CR; Lucas PA
    Dev Dyn; 1995 Feb; 202(2):137-44. PubMed ID: 7734732
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatial organization of the developing limb musculature in birds and mammals.
    Kieny M; Pautou MP; Chevallier A; Mauger A
    Bibl Anat; 1986; (29):65-90. PubMed ID: 2425796
    [No Abstract]   [Full Text] [Related]  

  • 47. Unexpected contribution of fibroblasts to muscle lineage as a mechanism for limb muscle patterning.
    Esteves de Lima J; Blavet C; Bonnin MA; Hirsinger E; Comai G; Yvernogeau L; Delfini MC; Bellenger L; Mella S; Nassari S; Robin C; Schweitzer R; Fournier-Thibault C; Jaffredo T; Tajbakhsh S; Relaix F; Duprez D
    Nat Commun; 2021 Jun; 12(1):3851. PubMed ID: 34158501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Development of connective tissue in mouse skeletal muscle].
    Bogusch G; Barrach HJ
    Acta Histochem Suppl; 1986; 32():139-43. PubMed ID: 3085150
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prazosin administration enhances proliferation of arteriolar adventitial fibroblasts.
    Price RJ; Skalak TC
    Microvasc Res; 1998 Mar; 55(2):138-45. PubMed ID: 9521888
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A method for ectopic expression of foreign genes in the chicken limb in vivo.
    Olwin BB; Riley B; Fallon JF
    Prog Clin Biol Res; 1993; 383B():635-43. PubMed ID: 8115379
    [No Abstract]   [Full Text] [Related]  

  • 51. Hoxa-11 and Hoxa-13 are involved in repression of MyoD during limb muscle development.
    Yamamoto M; Kuroiwa A
    Dev Growth Differ; 2003; 45(5-6):485-98. PubMed ID: 14706073
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell and tissue interactions in the organogenesis of the avian limb musculature.
    Kieny MA
    Prog Clin Biol Res; 1982; 110 Pt B():293-302. PubMed ID: 7167579
    [No Abstract]   [Full Text] [Related]  

  • 53. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations.
    Hébert JM; Rosenquist T; Götz J; Martin GR
    Cell; 1994 Sep; 78(6):1017-25. PubMed ID: 7923352
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Homeobox genes and connective tissue patterning.
    Oliver G; Wehr R; Jenkins NA; Copeland NG; Cheyette BN; Hartenstein V; Zipursky SL; Gruss P
    Development; 1995 Mar; 121(3):693-705. PubMed ID: 7720577
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fibroblast-growth-factor-induced additional limbs in the study of initiation of limb formation, limb identity, myogenesis, and innervation.
    Ohuchi H; Noji S
    Cell Tissue Res; 1999 Apr; 296(1):45-56. PubMed ID: 10199964
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Disparate Igf1 expression and growth in the fore- and hind limbs of a marsupial mammal (Monodelphis domestica).
    Sears KE; Patel A; Hübler M; Cao X; Vandeberg JL; Zhong S
    J Exp Zool B Mol Dev Evol; 2012 Jun; 318(4):279-93. PubMed ID: 22821864
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Muscle and tendon morphogenesis in the avian hind limb.
    Kardon G
    Development; 1998 Oct; 125(20):4019-32. PubMed ID: 9735363
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Study of the origin of connective tissue sheaths of peripheral nerves in the limb of avian embryos.
    Haninec P
    Anat Embryol (Berl); 1988; 178(6):553-7. PubMed ID: 3223613
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Origin and development of avian limb muscles.
    Jacob HJ; Christ B; Jacob M
    Acta Histochem Suppl; 1986; 32():145-50. PubMed ID: 2422681
    [No Abstract]   [Full Text] [Related]  

  • 60. Four and a half domain 2 (FHL2) scaffolding protein is a marker of connective tissues of developing digits and regulates fibrogenic differentiation of limb mesodermal progenitors.
    Lorda-Diez CI; Montero JA; Sanchez-Fernandez C; Garcia-Porrero JA; Chimal-Monroy J; Hurle JM
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e2062-e2072. PubMed ID: 29330921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.