BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 11067997)

  • 1. Effects of nucleus prepositus hypoglossi lesions on visual climbing fiber activity in the rabbit flocculus.
    Arts MP; De Zeeuw CI; Lips J; Rosbak E; Simpson JI
    J Neurophysiol; 2000 Nov; 84(5):2552-63. PubMed ID: 11067997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferior olive and oculomotor system.
    Barmack NH
    Prog Brain Res; 2006; 151():269-91. PubMed ID: 16221592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit.
    De Zeeuw CI; Wentzel P; Mugnaini E
    J Comp Neurol; 1993 Jan; 327(1):63-82. PubMed ID: 7679420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholinergic projection to the dorsal cap of the inferior olive of the rat, rabbit, and monkey.
    Barmack NH; Fagerson M; Errico P
    J Comp Neurol; 1993 Feb; 328(2):263-81. PubMed ID: 8423244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group Y and the ventral dentate nucleus.
    De Zeeuw CI; Gerrits NM; Voogd J; Leonard CS; Simpson JI
    J Comp Neurol; 1994 Mar; 341(3):420-32. PubMed ID: 7515083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of vestibular nucleus projections to the caudal dorsal cap of kooy in rabbits.
    Balaban CD; Beryozkin G
    Neuroscience; 1994 Oct; 62(4):1217-36. PubMed ID: 7845595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coexistence of choline acetyltransferase and GABA in axon terminals in the dorsal cap of the rat inferior olive.
    Caffé AR; Hawkins RK; De Zeeuw CI
    Brain Res; 1996 Jun; 724(1):136-40. PubMed ID: 8816268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of inferior olivary projections to the flocculus and ventral paraflocculus of the rat cerebellum.
    Ruigrok TJ; Osse RJ; Voogd J
    J Comp Neurol; 1992 Feb; 316(2):129-50. PubMed ID: 1374083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements.
    De Zeeuw CI; Wylie DR; Stahl JS; Simpson JI
    J Neurophysiol; 1995 Nov; 74(5):2051-64. PubMed ID: 8592196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature of optokinetic response and zonal organization of climbing fiber afferents in the vestibulocerebellum of the pigmented rabbit. I. The flocculus.
    Kusunoki M; Kano M; Kano MS; Maekawa K
    Exp Brain Res; 1990; 80(2):225-37. PubMed ID: 2358040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discharge properties of brain stem neurons projecting to the flocculus in the alert cat. II. Prepositus hypoglossal nucleus.
    Escudero M; Cheron G; Godaux E
    J Neurophysiol; 1996 Sep; 76(3):1775-85. PubMed ID: 8890291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system.
    De Zeeuw CI; Koekkoek SK; Wylie DR; Simpson JI
    J Neurophysiol; 1997 Apr; 77(4):1747-58. PubMed ID: 9114233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of signal content of Purkinje cell responses to optokinetic stimuli in the rabbit cerebellar flocculus by selective lesions of brainstem pathways.
    Miyashita Y; Nagao S
    Neurosci Res; 1984 Aug; 1(4):223-41. PubMed ID: 6536897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olivary branching projections to the flocculus, nodulus and uvula in the rabbit. I. An electrophysiological study.
    Takeda T; Maekawa K
    Exp Brain Res; 1989; 74(1):47-62. PubMed ID: 2924841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of microlesions of dorsal cap of inferior olive of rabbits on optokinetic and vestibuloocular reflexes.
    Barmack NH; Simpson JI
    J Neurophysiol; 1980 Jan; 43(1):182-206. PubMed ID: 6965403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optokinetic response of simple spikes of Purkinje cells in the cerebellar flocculus and nodulus of the pigmented rabbit.
    Kano M; Kano MS; Maekawa K
    Exp Brain Res; 1991; 87(3):484-96. PubMed ID: 1783019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat.
    Lang EJ; Sugihara I; Llinás R
    J Neurophysiol; 1996 Jul; 76(1):255-75. PubMed ID: 8836223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zonal organization of the mouse flocculus: physiology, input, and output.
    Schonewille M; Luo C; Ruigrok TJ; Voogd J; Schmolesky MT; Rutteman M; Hoebeek FE; De Jeu MT; De Zeeuw CI
    J Comp Neurol; 2006 Aug; 497(4):670-82. PubMed ID: 16739198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vestibularly induced slow oscillations in climbing fiber responses of Purkinje cells in the cerebellar nodulus of the rabbit.
    Barmack NH; Shojaku H
    Neuroscience; 1992 Sep; 50(1):1-5. PubMed ID: 1407553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase.
    Langer T; Fuchs AF; Scudder CA; Chubb MC
    J Comp Neurol; 1985 May; 235(1):1-25. PubMed ID: 3989000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.