These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 11068001)

  • 41. Alternating between pro- and antisaccades: switch-costs manifest via decoupling the spatial relations between stimulus and response.
    Heath M; Gillen C; Samani A
    Exp Brain Res; 2016 Mar; 234(3):853-65. PubMed ID: 26661337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antisaccade velocity, but not latency, results from a lack of saccade visual guidance.
    Edelman JA; Valenzuela N; Barton JJ
    Vision Res; 2006 Apr; 46(8-9):1411-21. PubMed ID: 16260025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The unidirectional prosaccade switch-cost: correct and error antisaccades differentially influence the planning times for subsequent prosaccades.
    DeSimone JC; Weiler J; Aber GS; Heath M
    Vision Res; 2014 Mar; 96():17-24. PubMed ID: 24412739
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The relation between antisaccade errors, fixation stability and prosaccade errors in schizophrenia.
    Barton JJ; Pandita M; Thakkar K; Goff DC; Manoach DS
    Exp Brain Res; 2008 Mar; 186(2):273-82. PubMed ID: 18057921
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of task-specific training on saccadic eye movement performance.
    Montenegro SM; Edelman JA
    J Neurophysiol; 2019 Oct; 122(4):1661-1674. PubMed ID: 31461366
    [TBL] [Abstract][Full Text] [Related]  

  • 46. When pros become cons for anti- versus prosaccades: factors with opposite or common effects on different saccade types.
    Kristjánsson A; Vandenbroucke MW; Driver J
    Exp Brain Res; 2004 Mar; 155(2):231-44. PubMed ID: 14661119
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibition failures and late errors in the antisaccade task: influence of cue delay.
    Aponte EA; Tschan DG; Stephan KE; Heinzle J
    J Neurophysiol; 2018 Dec; 120(6):3001-3016. PubMed ID: 30110237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strategic modulation of the fixation-offset effect: dissociable effects of target probability on prosaccades and antisaccades.
    Gmeindl L; Rontal A; Reuter-Lorenz PA
    Exp Brain Res; 2005 Jul; 164(2):194-204. PubMed ID: 15924234
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Further observations on the occurrence of express-saccades in the monkey.
    Boch R; Fischer B
    Exp Brain Res; 1986; 63(3):487-94. PubMed ID: 3758267
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of preparation time and trial type probability on performance of anti- and pro-saccades.
    Pierce JE; McDowell JE
    Acta Psychol (Amst); 2016 Feb; 164():188-94. PubMed ID: 26829023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reflex suppression in the anti-saccade task is dependent on prestimulus neural processes.
    Everling S; Dorris MC; Munoz DP
    J Neurophysiol; 1998 Sep; 80(3):1584-9. PubMed ID: 9744965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Task-switching in oculomotor control: unidirectional switch-cost when alternating between pro- and antisaccades.
    Weiler J; Heath M
    Neurosci Lett; 2012 Nov; 530(2):150-4. PubMed ID: 23063688
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Saccade suppression by electrical microstimulation in monkey caudate nucleus.
    Watanabe M; Munoz DP
    J Neurosci; 2010 Feb; 30(7):2700-9. PubMed ID: 20164354
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A neural model of decision-making by the superior colicullus in an antisaccade task.
    Cutsuridis V; Smyrnis N; Evdokimidis I; Perantonis S
    Neural Netw; 2007 Aug; 20(6):690-704. PubMed ID: 17446043
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Response selection in prosaccades, antisaccades, and other volitional saccades.
    Kloft L; Reuter B; Viswanathan J; Kathmann N; Barton JJ
    Exp Brain Res; 2012 Oct; 222(4):345-53. PubMed ID: 22910901
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The mirror antisaccade task: direction-amplitude interaction and spatial accuracy characteristics.
    Evdokimidis I; Tsekou H; Smyrnis N
    Exp Brain Res; 2006 Sep; 174(2):304-11. PubMed ID: 16636790
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two Types of Neurons in the Primate Globus Pallidus External Segment Play Distinct Roles in Antisaccade Generation.
    Yoshida A; Tanaka M
    Cereb Cortex; 2016 Mar; 26(3):1187-99. PubMed ID: 25577577
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The unidirectional prosaccade switch-cost: electroencephalographic evidence of task-set inertia in oculomotor control.
    Weiler J; Hassall CD; Krigolson OE; Heath M
    Behav Brain Res; 2015 Feb; 278():323-9. PubMed ID: 25453741
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory.
    Mazzoni P; Bracewell RM; Barash S; Andersen RA
    J Neurophysiol; 1996 Sep; 76(3):1439-56. PubMed ID: 8890265
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Less attention is more in the preparation of antisaccades, but not prosaccades.
    Kristjánsson A; Chen Y; Nakayama K
    Nat Neurosci; 2001 Oct; 4(10):1037-42. PubMed ID: 11547337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.