BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 11068012)

  • 1. Homeostasis of REM sleep after total and selective sleep deprivation in the rat.
    Ocampo-Garcés A; Molina E; Rodríguez A; Vivaldi EA
    J Neurophysiol; 2000 Nov; 84(5):2699-702. PubMed ID: 11068012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.
    Stephenson R; Caron AM; Famina S
    Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep.
    Marzano C; Ferrara M; Curcio G; De Gennaro L
    J Sleep Res; 2010 Jun; 19(2):260-8. PubMed ID: 19845849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term homeostasis of REM sleep assessed in an intermittent REM sleep deprivation protocol in the rat.
    Ocampo-Garcés A; Vivaldi EA
    J Sleep Res; 2002 Mar; 11(1):81-9. PubMed ID: 11869431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological Modulation of Sleep Homeostasis in Rat: Novel Effects of an mGluR2/3 Antagonist.
    Hanley N; Paulissen J; Eastwood BJ; Gilmour G; Loomis S; Wafford KA; McCarthy A
    Sleep; 2019 Sep; 42(9):. PubMed ID: 31106825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The European starling (Sturnus vulgaris) shows signs of NREM sleep homeostasis but has very little REM sleep and no REM sleep homeostasis.
    van Hasselt SJ; Rusche M; Vyssotski AL; Verhulst S; Rattenborg NC; Meerlo P
    Sleep; 2020 Jun; 43(6):. PubMed ID: 31863116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.
    Xu XH; Qu WM; Bian MJ; Huang F; Fei J; Urade Y; Huang ZL
    PLoS One; 2013; 8(10):e75823. PubMed ID: 24155871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isoflurane anesthesia does not satisfy the homeostatic need for rapid eye movement sleep.
    Mashour GA; Lipinski WJ; Matlen LB; Walker AJ; Turner AM; Schoen W; Lee U; Poe GR
    Anesth Analg; 2010 May; 110(5):1283-9. PubMed ID: 20418293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The homeostatic and circadian sleep recovery responses after total sleep deprivation in mice.
    Dispersyn G; Sauvet F; Gomez-Merino D; Ciret S; Drogou C; Leger D; Gallopin T; Chennaoui M
    J Sleep Res; 2017 Oct; 26(5):531-538. PubMed ID: 28425172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preoptic area neurons and the homeostatic regulation of rapid eye movement sleep.
    Gvilia I; Turner A; McGinty D; Szymusiak R
    J Neurosci; 2006 Mar; 26(11):3037-44. PubMed ID: 16540582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. REM sleep-dependent short-term and long-term hourglass processes in the ultradian organization and recovery of REM sleep in the rat.
    Ocampo-Garcés A; Bassi A; Brunetti E; Estrada J; Vivaldi EA
    Sleep; 2020 Aug; 43(8):. PubMed ID: 32052056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis.
    Martinez-Gonzalez D; Lesku JA; Rattenborg NC
    J Sleep Res; 2008 Jun; 17(2):140-53. PubMed ID: 18321247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid eye movement (REM) sleep homeostatic regulatory processes in the rat: changes in the sleep-wake stages and electroencephalographic power spectra.
    Shea JL; Mochizuki T; Sagvaag V; Aspevik T; Bjorkum AA; Datta S
    Brain Res; 2008 Jun; 1213():48-56. PubMed ID: 18455709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of method, duration, and sleep stage on rebounds from sleep deprivation in the rat.
    Rechtschaffen A; Bergmann BM; Gilliland MA; Bauer K
    Sleep; 1999 Feb; 22(1):11-31. PubMed ID: 9989363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus.
    Wurts SW; Edgar DM
    J Neurosci; 2000 Jun; 20(11):4300-10. PubMed ID: 10818165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total sleep deprivation in the rat transiently abolishes the delta amplitude response to darkness: implications for the mechanism of the "negative delta rebound".
    Feinberg I; Campbell IG
    J Neurophysiol; 1993 Dec; 70(6):2695-9. PubMed ID: 8120610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains.
    Kostyalik D; Vas S; Kátai Z; Kitka T; Gyertyán I; Bagdy G; Tóthfalusi L
    BMC Neurosci; 2014 Nov; 15():120. PubMed ID: 25406958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does the function of REM sleep concern non-REM sleep or waking?
    Benington JH; Heller HC
    Prog Neurobiol; 1994 Dec; 44(5):433-49. PubMed ID: 7886233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-dependent changes in recovery sleep after 48 hours of sleep deprivation in rats.
    Mendelson WB; Bergmann BM
    Neurobiol Aging; 2000; 21(5):689-93. PubMed ID: 11016538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interhemispheric sleep EEG asymmetry in the rat is enhanced by sleep deprivation.
    Vyazovskiy VV; Borbély AA; Tobler I
    J Neurophysiol; 2002 Nov; 88(5):2280-6. PubMed ID: 12424269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.