BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

668 related articles for article (PubMed ID: 11068148)

  • 1. Regrowth of acute and chronic injured spinal pathways within supra-lesional post-traumatic nerve grafts.
    Decherchi P; Gauthier P
    Neuroscience; 2000; 101(1):197-210. PubMed ID: 11068148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of acutely and chronically injured descending respiratory pathways within post-traumatic nerve grafts.
    Decherchi P; Gauthier P
    Neuroscience; 2002; 112(1):141-52. PubMed ID: 12044479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration.
    Tobias CA; Shumsky JS; Shibata M; Tuszynski MH; Fischer I; Tessler A; Murray M
    Exp Neurol; 2003 Nov; 184(1):97-113. PubMed ID: 14637084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regeneration of primary sensory axons into the adult rat spinal cord via a peripheral nerve graft bridging the lumbar dorsal roots to the dorsal column.
    Dam-Hieu P; Liu S; Choudhri T; Said G; Tadié M
    J Neurosci Res; 2002 May; 68(3):293-304. PubMed ID: 12111859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of corticospinal tract regeneration in the chronically injured spinal cord.
    Ferguson IA; Koide T; Rush RA
    Eur J Neurosci; 2001 Mar; 13(5):1059-64. PubMed ID: 11264681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axotomized rubrospinal neurons rescued by fetal spinal cord transplants maintain axon collaterals to rostral CNS targets.
    Bernstein-Goral H; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):13-25. PubMed ID: 9398446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord.
    Tom VJ; Sandrow-Feinberg HR; Miller K; Santi L; Connors T; Lemay MA; Houlé JD
    J Neurosci; 2009 Nov; 29(47):14881-90. PubMed ID: 19940184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal cord transplants support the regeneration of axotomized neurons after spinal cord lesions at birth: a quantitative double-labeling study.
    Bernstein-Goral H; Bregman BS
    Exp Neurol; 1993 Sep; 123(1):118-32. PubMed ID: 8405272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of delayed nerve repair on neuronal survival and axonal regeneration after seventh cervical spinal nerve axotomy in adult rats.
    Jivan S; Novikova LN; Wiberg M; Novikov LN
    Exp Brain Res; 2006 Apr; 170(2):245-54. PubMed ID: 16328277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury.
    Jin Y; Fischer I; Tessler A; Houle JD
    Exp Neurol; 2002 Sep; 177(1):265-75. PubMed ID: 12429228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restriction of axonal retraction and promotion of axonal regeneration by chronically injured neurons after intraspinal treatment with glial cell line-derived neurotrophic factor (GDNF).
    Dolbeare D; Houle JD
    J Neurotrauma; 2003 Nov; 20(11):1251-61. PubMed ID: 14651811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal regeneration after crush injury of rat central nervous system fibres innervating peripheral nerve grafts.
    David S; Aguayo AJ
    J Neurocytol; 1985 Feb; 14(1):1-12. PubMed ID: 4009210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of the potential for chronically injured neurons to regenerate axons into intraspinal peripheral nerve grafts.
    Houle JD
    Exp Neurol; 1991 Jul; 113(1):1-9. PubMed ID: 2044676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation of autologous dorsal root ganglia into the peroneal nerve of adult rats: uni- and bidirectional axonal regrowth from the grafted DRG neurons.
    Bauchet L; Mille-Hamard L; Baillet-Derbin C; Horvat JC
    Exp Neurol; 2001 Feb; 167(2):312-20. PubMed ID: 11161619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory axon regeneration in the chronically injured spinal cord.
    Cheng L; Sami A; Ghosh B; Goudsward HJ; Smith GM; Wright MC; Li S; Lepore AC
    Neurobiol Dis; 2021 Jul; 155():105389. PubMed ID: 33975016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extension and regeneration of corticospinal axons after early spinal injury and the maintenance of corticospinal topography.
    Bates CA; Stelzner DJ
    Exp Neurol; 1993 Sep; 123(1):106-17. PubMed ID: 8405271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats.
    Lee YS; Lin CY; Robertson RT; Hsiao I; Lin VW
    J Neuropathol Exp Neurol; 2004 Mar; 63(3):233-45. PubMed ID: 15055447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery.
    Xiao M; Klueber KM; Lu C; Guo Z; Marshall CT; Wang H; Roisen FJ
    Exp Neurol; 2005 Jul; 194(1):12-30. PubMed ID: 15899240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons.
    Ye JH; Houle JD
    Exp Neurol; 1997 Jan; 143(1):70-81. PubMed ID: 9000447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins.
    Coumans JV; Lin TT; Dai HN; MacArthur L; McAtee M; Nash C; Bregman BS
    J Neurosci; 2001 Dec; 21(23):9334-44. PubMed ID: 11717367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.