These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 11068880)
1. 4-nitroimidazole binding to horse metmyoglobin: evidence for preferential anion binding. Taylor KC; Vitello LB; Erman JE Arch Biochem Biophys; 2000 Oct; 382(2):284-95. PubMed ID: 11068880 [TBL] [Abstract][Full Text] [Related]
2. Imidazole binding to horse metmyoglobin: dependence upon pH and ionic strength. Lin J; Vitello LB; Erman JE Arch Biochem Biophys; 1998 Apr; 352(2):214-28. PubMed ID: 9587409 [TBL] [Abstract][Full Text] [Related]
3. Metmyoglobin/azide: the effect of heme-linked ionizations on the rate of complex formation. Lin J; Merryweather J; Vitello LB; Erman JE Arch Biochem Biophys; 1999 Feb; 362(1):148-58. PubMed ID: 9917339 [TBL] [Abstract][Full Text] [Related]
4. Metmyoglobin/fluoride: effect of distal histidine protonation on the association and dissociation rate constants. Merryweather J; Summers F; Vitello LB; Erman JE Arch Biochem Biophys; 1998 Oct; 358(2):359-68. PubMed ID: 9784251 [TBL] [Abstract][Full Text] [Related]
5. Azide binding to yeast cytochrome c peroxidase and horse metmyoglobin: comparative thermodynamic investigation using isothermal titration calorimetry. Jacobson T; Williamson J; Wasilewski A; Felesik J; Vitello LB; Erman JE Arch Biochem Biophys; 2004 Feb; 422(2):125-36. PubMed ID: 14759599 [TBL] [Abstract][Full Text] [Related]
6. Studies on interactions between metmyoglobin and heparin. Fedunová D; Antalík M Gen Physiol Biophys; 1998 Jun; 17(2):117-31. PubMed ID: 9785100 [TBL] [Abstract][Full Text] [Related]
7. Control of formation and dissociation of the high-affinity complex between cytochrome c and cytochrome c peroxidase by ionic strength and the low-affinity binding site. Mei H; Wang K; McKee S; Wang X; Waldner JL; Pielak GJ; Durham B; Millett F Biochemistry; 1996 Dec; 35(49):15800-6. PubMed ID: 8961943 [TBL] [Abstract][Full Text] [Related]
8. Cyanide binding to cytochrome c peroxidase (H52L). Bidwai A; Witt M; Foshay M; Vitello LB; Satterlee JD; Erman JE Biochemistry; 2003 Sep; 42(36):10764-71. PubMed ID: 12962501 [TBL] [Abstract][Full Text] [Related]
9. Binding of imidazole, 1-methylimidazole and 4-nitroimidazole to yeast cytochrome c peroxidase (CcP) and the distal histidine mutant, CcP(H52L). Erman JE; Chinchilla D; Studer J; Vitello LB Biochim Biophys Acta; 2015 Aug; 1854(8):869-81. PubMed ID: 25907133 [TBL] [Abstract][Full Text] [Related]
10. Kinetics and mechanism of *NO2 reacting with various oxidation states of myoglobin. Goldstein S; Merenyi G; Samuni A J Am Chem Soc; 2004 Dec; 126(48):15694-701. PubMed ID: 15571391 [TBL] [Abstract][Full Text] [Related]
11. Folding of horse cytochrome c in the reduced state. Bhuyan AK; Udgaonkar JB J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255 [TBL] [Abstract][Full Text] [Related]
12. The eosin-5-maleimide binding site on human erythrocyte band 3: investigation of membrane sidedness and location of charged residues by triplet state quenching. Pan RJ; Cherry RJ Biochemistry; 1998 Jul; 37(28):10238-45. PubMed ID: 9665731 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamics of the alkaline transition of cytochrome c. Battistuzzi G; Borsari M; Loschi L; Martinelli A; Sola M Biochemistry; 1999 Jun; 38(25):7900-7. PubMed ID: 10387031 [TBL] [Abstract][Full Text] [Related]
14. The pH dependence of naturally occurring low-spin forms of methaemoglobin and metmyoglobin: an EPR study. Svistunenko DA; Sharpe MA; Nicholls P; Blenkinsop C; Davies NA; Dunne J; Wilson MT; Cooper CE Biochem J; 2000 Nov; 351 Pt 3(Pt 3):595-605. PubMed ID: 11042113 [TBL] [Abstract][Full Text] [Related]
15. Interaction of porin from Yersinia pseudotuberculosis with lipopolysaccharides. Effect of ionic strength, pH, and divalent cations on the binding parameters. Naberezhnykh GA; Kim NY; Glazunov VP; Bakholdina SI; Krasikova IN; Khomenko VA; Solov'eva TF Biochemistry (Mosc); 2000 Apr; 65(4):485-93. PubMed ID: 10810188 [TBL] [Abstract][Full Text] [Related]
16. The role of the salt concentration, proton, and phosphate binding on the thermal stability of wild and cloned DNA-binding protein Sso7d from Sulfolobus solfataricus. Todorova R; Atanasov B Int J Biol Macromol; 2004 Apr; 34(1-2):135-47. PubMed ID: 15178018 [TBL] [Abstract][Full Text] [Related]
17. Effect of acetylation and succinylation on solubility profile, water absorption capacity, oil absorption capacity and emulsifying properties of mucuna bean (Mucuna pruriens) protein concentrate. Lawal OS; Adebowale KO Nahrung; 2004 Apr; 48(2):129-36. PubMed ID: 15146970 [TBL] [Abstract][Full Text] [Related]
18. Murexide for determination of free and protein-bound calcium in model systems. Sundararajan NR; Whitney RM J Dairy Sci; 1975 Nov; 58(11):1595-608. PubMed ID: 426 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic studies of the isomerization of peroxynitrite to nitrate catalyzed by distal histidine metmyoglobin mutants. Herold S; Kalinga S; Matsui T; Watanabe Y J Am Chem Soc; 2004 Jun; 126(22):6945-55. PubMed ID: 15174864 [TBL] [Abstract][Full Text] [Related]
20. Towards the mechanism of trimeric purine nucleoside phosphorylases: stopped-flow studies of binding of multisubstrate analogue inhibitor - 2-amino-9-[2-(phosphonomethoxy)ethyl]-6-sulfanylpurine. Wielgus-Kutrowska B; Antosiewicz JM; Długosz M; Holý A; Bzowska A Biophys Chem; 2007 Feb; 125(2-3):260-8. PubMed ID: 16989940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]