BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 11068883)

  • 1. p38 map kinase substrate specificity differs greatly for protein and peptide substrates.
    Hawkins J; Zheng S; Frantz B; LoGrasso P
    Arch Biochem Biophys; 2000 Oct; 382(2):310-3. PubMed ID: 11068883
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of two distinct regions of p38 MAPK required for substrate binding and phosphorylation.
    Gum RJ; Young PR
    Biochem Biophys Res Commun; 1999 Dec; 266(1):284-9. PubMed ID: 10581204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery and characterization of a substrate selective p38alpha inhibitor.
    Davidson W; Frego L; Peet GW; Kroe RR; Labadia ME; Lukas SM; Snow RJ; Jakes S; Grygon CA; Pargellis C; Werneburg BG
    Biochemistry; 2004 Sep; 43(37):11658-71. PubMed ID: 15362850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proinsulin C-peptide activates cAMP response element-binding proteins through the p38 mitogen-activated protein kinase pathway in mouse lung capillary endothelial cells.
    Kitamura T; Kimura K; Jung BD; Makondo K; Sakane N; Yoshida T; Saito M
    Biochem J; 2002 Sep; 366(Pt 3):737-44. PubMed ID: 12059784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of extracellular signal-regulated kinase and c-Jun-NH(2)-terminal kinase but not p38 mitogen-activated protein kinases is required for RRR-alpha-tocopheryl succinate-induced apoptosis of human breast cancer cells.
    Yu W; Liao QY; Hantash FM; Sanders BG; Kline K
    Cancer Res; 2001 Sep; 61(17):6569-76. PubMed ID: 11522656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose potentiates interleukin-1 beta (IL-1 beta)-induced p38 mitogen-activated protein kinase activity in rat pancreatic islets of Langerhans.
    Sprinkel AM; Andersen NA; Mandrup-Poulsen T
    Eur Cytokine Netw; 2001; 12(2):331-9. PubMed ID: 11399523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysis and function of the p38 alpha.MK2a signaling complex.
    Lukas SM; Kroe RR; Wildeson J; Peet GW; Frego L; Davidson W; Ingraham RH; Pargellis CA; Labadia ME; Werneburg BG
    Biochemistry; 2004 Aug; 43(31):9950-60. PubMed ID: 15287722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinoblastoma protein interacts with ATF2 and JNK/p38 in stimulating the transforming growth factor-beta2 promoter.
    Li H; Wicks WD
    Arch Biochem Biophys; 2001 Oct; 394(1):1-12. PubMed ID: 11566021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of GTP cyclohydrolase I gene transcription by basic region leucine zipper transcription factors.
    Al Sarraj J; Vinson C; Han J; Thiel G
    J Cell Biochem; 2005 Dec; 96(5):1003-20. PubMed ID: 16149046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates are differentially expressed following systemic administration of kainic acid to the adult rat.
    Ferrer I; Blanco R; Carmona M; Puig B; Domínguez I; Viñals F
    Acta Neuropathol; 2002 Apr; 103(4):391-407. PubMed ID: 11904760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinetic mechanism of the dual phosphorylation of the ATF2 transcription factor by p38 mitogen-activated protein (MAP) kinase alpha. Implications for signal/response profiles of MAP kinase pathways.
    Waas WF; Lo HH; Dalby KN
    J Biol Chem; 2001 Feb; 276(8):5676-84. PubMed ID: 11069918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the activation of stress-activated protein kinases using GAL4 fusion transactivators.
    Zheng CF; Xu L
    Methods Mol Biol; 2000; 99():145-60. PubMed ID: 10909083
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetic mechanism for p38 MAP kinase.
    LoGrasso PV; Frantz B; Rolando AM; O'Keefe SJ; Hermes JD; O'Neill EA
    Biochemistry; 1997 Aug; 36(34):10422-7. PubMed ID: 9265622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved method to unravel phosphoacceptors in Ser/Thr protein kinase-phosphorylated substrates.
    Molle V; Leiba J; Zanella-Cléon I; Becchi M; Kremer L
    Proteomics; 2010 Nov; 10(21):3910-5. PubMed ID: 20925060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translation. Turned on by insulin.
    Proud CG
    Nature; 1994 Oct; 371(6500):747-8. PubMed ID: 7935831
    [No Abstract]   [Full Text] [Related]  

  • 16. Kinetic mechanism for p38 MAP kinase alpha. A partial rapid-equilibrium random-order ternary-complex mechanism for the phosphorylation of a protein substrate.
    Szafranska AE; Dalby KN
    FEBS J; 2005 Sep; 272(18):4631-45. PubMed ID: 16156785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LEDGF/DFS70 activates the MK2/IL6/STAT3 pathway in HaCaT.
    Takeichi T; Sugiura K; Muro Y; Ogawa Y; Akiyama M
    J Dermatol Sci; 2011 Sep; 63(3):203-5. PubMed ID: 21676593
    [No Abstract]   [Full Text] [Related]  

  • 18. Examination of the kinetic mechanism of mitogen-activated protein kinase activated protein kinase-2.
    Schindler JF; Godbey A; Hood WF; Bolten SL; Broadus RM; Kasten TP; Cassely AJ; Hirsch JL; Merwood MA; Nagy MA; Fok KF; Saabye MJ; Morgan HM; Compton RP; Mourey RJ; Wittwer AJ; Monahan JB
    Biochim Biophys Acta; 2002 Jul; 1598(1-2):88-97. PubMed ID: 12147348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a microsphere-based p38alpha MAP kinase no-wash assay.
    Laufer S; Linsenmaier S
    J Biomol Screen; 2006 Aug; 11(5):528-36. PubMed ID: 16760368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activating MAP KAP kinase 2.
    ter Haar E
    Structure; 2003 Jun; 11(6):611-2. PubMed ID: 12791249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.