These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 11069008)
1. Ferrocene-Mediated carbon paste electrode modified with D-fructose dehydrogenase for batch mode measurement of D-fructose. Boujtita M; El Murr N Appl Biochem Biotechnol; 2000 Oct; 89(1):55-66. PubMed ID: 11069008 [TBL] [Abstract][Full Text] [Related]
2. Amperometric fructose sensor based on ferrocyanide modified screen-printed carbon electrode. Biscay J; Costa Rama E; González García MB; Julio Reviejo A; Pingarrón Carrazón JM; García AC Talanta; 2012 Jan; 88():432-8. PubMed ID: 22265522 [TBL] [Abstract][Full Text] [Related]
3. Highly Sensitive Membraneless Fructose Biosensor Based on Fructose Dehydrogenase Immobilized onto Aryl Thiol Modified Highly Porous Gold Electrode: Characterization and Application in Food Samples. Bollella P; Hibino Y; Kano K; Gorton L; Antiochia R Anal Chem; 2018 Oct; 90(20):12131-12136. PubMed ID: 30148350 [TBL] [Abstract][Full Text] [Related]
4. Biosensor for determination of glucose and sucrose in fruit juices by flow injection analysis. Guémas Y; Boujtita M; el Murr N Appl Biochem Biotechnol; 2000; 89(2-3):171-81. PubMed ID: 11209461 [TBL] [Abstract][Full Text] [Related]
5. Modified gold surfaces by poly(amidoamine) dendrimers and fructose dehydrogenase for mediated fructose sensing. Damar K; Odaci Demirkol D Talanta; 2011 Dec; 87():67-73. PubMed ID: 22099650 [TBL] [Abstract][Full Text] [Related]
6. An integrated bienzyme glucose oxidase-fructose dehydrogenase-tetrathiafulvalene-3-mercaptopropionic acid-gold electrode for the simultaneous determination of glucose and fructose. Campuzano S; Loaiza OA; Pedrero M; de Villena FJ; Pingarrón JM Bioelectrochemistry; 2004 Jun; 63(1-2):199-206. PubMed ID: 15110273 [TBL] [Abstract][Full Text] [Related]
7. Micro-cubic monolithic carbon cryogel electrode for direct electron transfer reaction of fructose dehydrogenase. Hamano Y; Tsujimura S; Shirai O; Kano K Bioelectrochemistry; 2012 Dec; 88():114-7. PubMed ID: 22917965 [TBL] [Abstract][Full Text] [Related]
8. Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes. New approach for dehydrogenase based biosensors. Serban S; El Murr N Biosens Bioelectron; 2004 Sep; 20(2):161-6. PubMed ID: 15308217 [TBL] [Abstract][Full Text] [Related]
9. Amperometric glucose sensors based on ferrocene containing polymeric electron transfer systems-a preliminary report. Patel H; Li X; Karan HI Biosens Bioelectron; 2003 Aug; 18(8):1073-6. PubMed ID: 12782471 [TBL] [Abstract][Full Text] [Related]
10. Coulometric D-fructose biosensor based on direct electron transfer using D-fructose dehydrogenase. Tsujimura S; Nishina A; Kamitaka Y; Kano K Anal Chem; 2009 Nov; 81(22):9383-7. PubMed ID: 19908905 [TBL] [Abstract][Full Text] [Related]
11. D-fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode. Tominaga M; Nomura S; Taniguchi I Biosens Bioelectron; 2009 Jan; 24(5):1184-8. PubMed ID: 18707862 [TBL] [Abstract][Full Text] [Related]
12. An integrated electrochemical fructose biosensor based on tetrathiafulvalene-modified self-assembled monolayers on gold electrodes. Campuzano S; Gálvez R; Pedrero M; Manuel de Villena FJ; Pingarrón JM Anal Bioanal Chem; 2003 Oct; 377(4):600-7. PubMed ID: 12898106 [TBL] [Abstract][Full Text] [Related]
13. Rapid and direct determination of fructose in food: a new osmium-polymer mediated biosensor. Antiochia R; Vinci G; Gorton L Food Chem; 2013 Oct; 140(4):742-7. PubMed ID: 23692761 [TBL] [Abstract][Full Text] [Related]
14. Mediated amperometric determination of xylose and glucose with an immobilized aldose dehydrogenase electrode. Smolander M; Livio HL; Räsänen L Biosens Bioelectron; 1992; 7(9):637-43. PubMed ID: 1337972 [TBL] [Abstract][Full Text] [Related]
15. Stabilization of ferrocene leakage by physical retention in a cellulose acetate membrane. The fructose biosensor. Tkác J; Vostiar I; Gemeiner P; Sturdík E Bioelectrochemistry; 2002 Jan; 55(1-2):149-51. PubMed ID: 11786362 [TBL] [Abstract][Full Text] [Related]
16. The influence of the shape of Au nanoparticles on the catalytic current of fructose dehydrogenase. Bollella P; Hibino Y; Conejo-Valverde P; Soto-Cruz J; Bergueiro J; Calderón M; Rojas-Carrillo O; Kano K; Gorton L Anal Bioanal Chem; 2019 Nov; 411(29):7645-7657. PubMed ID: 31286179 [TBL] [Abstract][Full Text] [Related]
17. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Kamitaka Y; Tsujimura S; Setoyama N; Kajino T; Kano K Phys Chem Chem Phys; 2007 Apr; 9(15):1793-801. PubMed ID: 17415490 [TBL] [Abstract][Full Text] [Related]
18. Interaction of Flavin-Dependent Fructose Dehydrogenase with Cytochrome c as Basis for the Construction of Biomacromolecular Architectures on Electrodes. Wettstein C; Kano K; Schäfer D; Wollenberger U; Lisdat F Anal Chem; 2016 Jun; 88(12):6382-9. PubMed ID: 27213223 [TBL] [Abstract][Full Text] [Related]
19. The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase. Bollella P; Hibino Y; Kano K; Gorton L; Antiochia R Anal Bioanal Chem; 2018 May; 410(14):3253-3264. PubMed ID: 29564502 [TBL] [Abstract][Full Text] [Related]
20. Bienzyme amperometric biosensor using gold nanoparticle-modified electrodes for the determination of inulin in foods. Manso J; Mena MA; Yáñez-Sedeño P; Pingarrón JM Anal Biochem; 2008 Apr; 375(2):345-53. PubMed ID: 18201543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]