BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11069008)

  • 1. Ferrocene-Mediated carbon paste electrode modified with D-fructose dehydrogenase for batch mode measurement of D-fructose.
    Boujtita M; El Murr N
    Appl Biochem Biotechnol; 2000 Oct; 89(1):55-66. PubMed ID: 11069008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amperometric fructose sensor based on ferrocyanide modified screen-printed carbon electrode.
    Biscay J; Costa Rama E; González García MB; Julio Reviejo A; Pingarrón Carrazón JM; García AC
    Talanta; 2012 Jan; 88():432-8. PubMed ID: 22265522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Sensitive Membraneless Fructose Biosensor Based on Fructose Dehydrogenase Immobilized onto Aryl Thiol Modified Highly Porous Gold Electrode: Characterization and Application in Food Samples.
    Bollella P; Hibino Y; Kano K; Gorton L; Antiochia R
    Anal Chem; 2018 Oct; 90(20):12131-12136. PubMed ID: 30148350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosensor for determination of glucose and sucrose in fruit juices by flow injection analysis.
    Guémas Y; Boujtita M; el Murr N
    Appl Biochem Biotechnol; 2000; 89(2-3):171-81. PubMed ID: 11209461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified gold surfaces by poly(amidoamine) dendrimers and fructose dehydrogenase for mediated fructose sensing.
    Damar K; Odaci Demirkol D
    Talanta; 2011 Dec; 87():67-73. PubMed ID: 22099650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated bienzyme glucose oxidase-fructose dehydrogenase-tetrathiafulvalene-3-mercaptopropionic acid-gold electrode for the simultaneous determination of glucose and fructose.
    Campuzano S; Loaiza OA; Pedrero M; de Villena FJ; Pingarrón JM
    Bioelectrochemistry; 2004 Jun; 63(1-2):199-206. PubMed ID: 15110273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-cubic monolithic carbon cryogel electrode for direct electron transfer reaction of fructose dehydrogenase.
    Hamano Y; Tsujimura S; Shirai O; Kano K
    Bioelectrochemistry; 2012 Dec; 88():114-7. PubMed ID: 22917965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes. New approach for dehydrogenase based biosensors.
    Serban S; El Murr N
    Biosens Bioelectron; 2004 Sep; 20(2):161-6. PubMed ID: 15308217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amperometric glucose sensors based on ferrocene containing polymeric electron transfer systems-a preliminary report.
    Patel H; Li X; Karan HI
    Biosens Bioelectron; 2003 Aug; 18(8):1073-6. PubMed ID: 12782471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coulometric D-fructose biosensor based on direct electron transfer using D-fructose dehydrogenase.
    Tsujimura S; Nishina A; Kamitaka Y; Kano K
    Anal Chem; 2009 Nov; 81(22):9383-7. PubMed ID: 19908905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode.
    Tominaga M; Nomura S; Taniguchi I
    Biosens Bioelectron; 2009 Jan; 24(5):1184-8. PubMed ID: 18707862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated electrochemical fructose biosensor based on tetrathiafulvalene-modified self-assembled monolayers on gold electrodes.
    Campuzano S; Gálvez R; Pedrero M; Manuel de Villena FJ; Pingarrón JM
    Anal Bioanal Chem; 2003 Oct; 377(4):600-7. PubMed ID: 12898106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and direct determination of fructose in food: a new osmium-polymer mediated biosensor.
    Antiochia R; Vinci G; Gorton L
    Food Chem; 2013 Oct; 140(4):742-7. PubMed ID: 23692761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mediated amperometric determination of xylose and glucose with an immobilized aldose dehydrogenase electrode.
    Smolander M; Livio HL; Räsänen L
    Biosens Bioelectron; 1992; 7(9):637-43. PubMed ID: 1337972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of ferrocene leakage by physical retention in a cellulose acetate membrane. The fructose biosensor.
    Tkác J; Vostiar I; Gemeiner P; Sturdík E
    Bioelectrochemistry; 2002 Jan; 55(1-2):149-51. PubMed ID: 11786362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of the shape of Au nanoparticles on the catalytic current of fructose dehydrogenase.
    Bollella P; Hibino Y; Conejo-Valverde P; Soto-Cruz J; Bergueiro J; Calderón M; Rojas-Carrillo O; Kano K; Gorton L
    Anal Bioanal Chem; 2019 Nov; 411(29):7645-7657. PubMed ID: 31286179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis.
    Kamitaka Y; Tsujimura S; Setoyama N; Kajino T; Kano K
    Phys Chem Chem Phys; 2007 Apr; 9(15):1793-801. PubMed ID: 17415490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of Flavin-Dependent Fructose Dehydrogenase with Cytochrome c as Basis for the Construction of Biomacromolecular Architectures on Electrodes.
    Wettstein C; Kano K; Schäfer D; Wollenberger U; Lisdat F
    Anal Chem; 2016 Jun; 88(12):6382-9. PubMed ID: 27213223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase.
    Bollella P; Hibino Y; Kano K; Gorton L; Antiochia R
    Anal Bioanal Chem; 2018 May; 410(14):3253-3264. PubMed ID: 29564502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bienzyme amperometric biosensor using gold nanoparticle-modified electrodes for the determination of inulin in foods.
    Manso J; Mena MA; Yáñez-Sedeño P; Pingarrón JM
    Anal Biochem; 2008 Apr; 375(2):345-53. PubMed ID: 18201543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.