BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 11069075)

  • 1. Characterization of a Xenopus laevis CXC chemokine receptor 4: implications for hematopoietic cell development in the vertebrate embryo.
    Moepps B; Braun M; Knöpfle K; Dillinger K; Knöchel W; Gierschik P
    Eur J Immunol; 2000 Oct; 30(10):2924-34. PubMed ID: 11069075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xenopus laevis Stromal cell-derived factor 1: conservation of structure and function during vertebrate development.
    Braun M; Wunderlin M; Spieth K; Knöchel W; Gierschik P; Moepps B
    J Immunol; 2002 Mar; 168(5):2340-7. PubMed ID: 11859124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple noggins in vertebrate genome: cloning and expression of noggin2 and noggin4 in Xenopus laevis.
    Eroshkin FM; Ermakova GV; Bayramov AV; Zaraisky AG
    Gene Expr Patterns; 2006 Jan; 6(2):180-6. PubMed ID: 16168719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, mRNA distribution, and functional expression of an avian counterpart of the chemokine receptor/HIV coreceptor CXCR4.
    Liang TS; Hartt JK; Lu S; Martins-Green M; Gao JL; Murphy PM
    J Leukoc Biol; 2001 Feb; 69(2):297-305. PubMed ID: 11272281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4.
    McGrath KE; Koniski AD; Maltby KM; McGann JK; Palis J
    Dev Biol; 1999 Sep; 213(2):442-56. PubMed ID: 10479460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of RhoB in the developing Xenopus laevis embryo.
    Vignal E; de Santa Barbara P; Guémar L; Donnay JM; Fort P; Faure S
    Gene Expr Patterns; 2007 Jan; 7(3):282-8. PubMed ID: 17049930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and function of Xenopus laevis p75(NTR) suggest evolution of developmental regulatory mechanisms.
    Hutson LD; Bothwell M
    J Neurobiol; 2001 Nov; 49(2):79-98. PubMed ID: 11598917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway.
    Takahashi C; Suzuki T; Nishida E; Kusakabe M
    Int J Dev Biol; 2012; 56(5):393-402. PubMed ID: 22811273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of SDF-1/CXCR4 signaling in primordial germ cell migration and survival or differentiation in Xenopus laevis.
    Takeuchi T; Tanigawa Y; Minamide R; Ikenishi K; Komiya T
    Mech Dev; 2010; 127(1-2):146-58. PubMed ID: 19770040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of xSDF-1α, xCXCR4, and xCXCR7 during gastrulation in Xenopus laevis.
    Mishra SK; Nagata T; Furusawa K; Sasaki A; Fukui A
    Int J Dev Biol; 2013; 57(1):95-100. PubMed ID: 23585357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterization of Xenopus laevis drg2, a member of the developmentally regulated GTP-binding protein subfamily.
    Ishikawa K; Azuma S; Ikawa S; Morishita Y; Gohda J; Akiyama T; Semba K; Inoue Ji
    Gene; 2003 Dec; 322():105-12. PubMed ID: 14644502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning, expression and partial characterization of Xksy, Xenopus member of the Sky family of receptor tyrosine kinases.
    Kishi YA; Funakoshi H; Matsumoto K; Nakamura T
    Gene; 2002 Apr; 288(1-2):29-40. PubMed ID: 12034491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors.
    Belmadani A; Tran PB; Ren D; Assimacopoulos S; Grove EA; Miller RJ
    J Neurosci; 2005 Apr; 25(16):3995-4003. PubMed ID: 15843601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators.
    Burns CE; DeBlasio T; Zhou Y; Zhang J; Zon L; Nimer SD
    Exp Hematol; 2002 Dec; 30(12):1381-9. PubMed ID: 12482499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The FoxO-subclass in Xenopus laevis development.
    Pohl BS; Schön C; Rössner A; Knöchel W
    Gene Expr Patterns; 2004 Dec; 5(2):187-92. PubMed ID: 15567714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xenopus Zic family and its role in neural and neural crest development.
    Nakata K; Nagai T; Aruga J; Mikoshiba K
    Mech Dev; 1998 Jul; 75(1-2):43-51. PubMed ID: 9739105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) receptor gene families: cloning and comparative expression analysis in Xenopus laevis.
    Massé K; Kyuno J; Bhamra S; Jones EA
    Int J Dev Biol; 2010; 54(8-9):1361-74. PubMed ID: 20712001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of two cDNAs encoding cholecystokinin precursors from the brain of Xenopus laevis.
    Wechselberger C; Kreil G
    J Mol Endocrinol; 1995 Jun; 14(3):357-64. PubMed ID: 7669225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Requirement for EphA receptor signaling in the segregation of Xenopus third and fourth arch neural crest cells.
    Helbling PM; Tran CT; Brändli AW
    Mech Dev; 1998 Nov; 78(1-2):63-79. PubMed ID: 9858686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a homologue of the deleted in colorectal cancer (DCC) gene in the nervous system of developing Xenopus embryos.
    Pierceall WE; Reale MA; Candia AF; Wright CV; Cho KR; Fearon ER
    Dev Biol; 1994 Dec; 166(2):654-65. PubMed ID: 7813784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.