These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 11069238)
1. Defective T cell function for inhibition of growth of Mycobacterium avium-intracellulare complex (MAC) in patients with MAC disease: restoration by cytokines. Tsukaguchi K; Yoneda T; Okamura H; Tamaki S; Takenaka H; Okamoto Y; Narita N J Infect Dis; 2000 Dec; 182(6):1664-71. PubMed ID: 11069238 [TBL] [Abstract][Full Text] [Related]
4. Bidirectional effects of cytokines on the growth of Mycobacterium avium within human monocytes. Shiratsuchi H; Johnson JL; Ellner JJ J Immunol; 1991 May; 146(9):3165-70. PubMed ID: 1901893 [TBL] [Abstract][Full Text] [Related]
5. Defective monocyte costimulation for IFN-gamma production in familial disseminated Mycobacterium avium complex infection: abnormal IL-12 regulation. Frucht DM; Holland SM J Immunol; 1996 Jul; 157(1):411-6. PubMed ID: 8683146 [TBL] [Abstract][Full Text] [Related]
6. Characterization of gammadelta T cells expressing CD158b, a killer cell inhibitory receptor, in a patient with chronic CD4(+) lymphocytopenia and disseminated Mycobacterium intracellulare infection. AirĂ² P; Caruso A; Stellini R; Antonioli C; Malacarne F; Licenziati S; Albertini A; Cattaneo R; Imberti L Clin Immunol; 2000 Jul; 96(1):67-75. PubMed ID: 10873429 [TBL] [Abstract][Full Text] [Related]
7. Role of T cell subsets in the modulation of Mycobacterium avium growth within human monocytes. Shiratsuchi H; Krukovets I; Ellner JJ Cell Immunol; 2000 May; 202(1):6-12. PubMed ID: 10873301 [TBL] [Abstract][Full Text] [Related]
8. Granulocyte-macrophage colony-stimulating factor augments phagocytosis of Mycobacterium avium complex by human immunodeficiency virus type 1-infected monocytes/macrophages in vitro and in vivo. Kedzierska K; Mak J; Mijch A; Cooke I; Rainbird M; Roberts S; Paukovics G; Jolley D; Lopez A; Crowe SM J Infect Dis; 2000 Jan; 181(1):390-4. PubMed ID: 10608795 [TBL] [Abstract][Full Text] [Related]
9. Growth inhibition of Mycobacterium avium complex in human alveolar macrophages by the combination of recombinant macrophage colony-stimulating factor and interferon-gamma. Rose RM; Fuglestad JM; Remington L Am J Respir Cell Mol Biol; 1991 Mar; 4(3):248-54. PubMed ID: 1900425 [TBL] [Abstract][Full Text] [Related]
10. Growth of Mycobacterium avium in human monocytes: identification of cytokines which reduce and enhance intracellular microbial growth. Denis M Eur J Immunol; 1991 Feb; 21(2):391-5. PubMed ID: 1900241 [TBL] [Abstract][Full Text] [Related]
11. [Studies on production of interleukin-1 beta (IL-1 beta) and granulocyte. Macrophage-colony stimulating factor (GM-CSF) by peripheral blood monocytes from patients with Mycobacterium avium-intracellulare complex (MAC) infection]. Tomoda K; Yoneda T; Tsukaguchi K; Yoshikawa M; Tokuyama T; Fu A; Okamoto Y; Fukuoka K; Yamamoto C; Nakaya M Kekkaku; 1995 Jul; 70(7):415-21. PubMed ID: 7564050 [TBL] [Abstract][Full Text] [Related]
12. [Responsiveness of lymphocytes from patients with M. avium-intracellulare complex (MAC) infection to PPDs as measured by IFN-gamma production]. Tomoda K; Yoneda T; Tsukaguchi K; Yoshikawa M; Tokuyama T; Fu A; Fukuoka K; Nakaya M; Narita N; Tasaka H Kekkaku; 1994 May; 69(5):361-5. PubMed ID: 8007522 [TBL] [Abstract][Full Text] [Related]
13. Anti-CD3 single-chain Fv/interleukin-18 fusion DNA induces anti-mycobacterial resistance via efficient interferon-gamma production in BALB/c mice infected with Mycobacterium avium. Kim SH; Cho D; Kim TS Vaccine; 2006 Apr; 24(16):3365-73. PubMed ID: 16481075 [TBL] [Abstract][Full Text] [Related]
14. Phenotypically activated gammadelta T lymphocytes in the peripheral blood of patients with tuberculosis. Behr-Perst SI; Munk ME; Schaberg T; Ulrichs T; Schulz RJ; Kaufmann SH J Infect Dis; 1999 Jul; 180(1):141-9. PubMed ID: 10353872 [TBL] [Abstract][Full Text] [Related]
15. [Immunological studies in cases of pulmonary Mycobacterium avium complex infection without predisposing conditions]. Ochiai S; Harada Y; Harada S; Emori M; Kitahara Y; Takamoto M; Ishibashi T; Nakanishi Y; Hara N Nihon Kokyuki Gakkai Zasshi; 2004 Mar; 42(3):232-8. PubMed ID: 15069779 [TBL] [Abstract][Full Text] [Related]
16. [Production of tumor necrosis factor alpha and interleukin-6 by peripheral monocytes from patients with atypical mycobacteriosis--relationship to clinical activity]. Tomoda K; Yoneda T; Tsukaguchi K; Yoshikawa M; Tokuyama T; Fu A; Fukuoka K; Nakaya M; Narita N; Tasaka H Nihon Kyobu Shikkan Gakkai Zasshi; 1995 Jun; 33(6):618-24. PubMed ID: 7666616 [TBL] [Abstract][Full Text] [Related]
17. Expression of costimulatory molecules (CD80, CD86, CD28, CD152), accessory molecules (TCR alphabeta, TCR gammadelta) and T cell lineage molecules (CD4+, CD8+) in PBMC of leprosy patients using Mycobacterium leprae antigen (MLCWA) with murabutide and T cell peptide of Trat protein. Sridevi K; Neena K; Chitralekha KT; Arif AK; Tomar D; Rao DN Int Immunopharmacol; 2004 Jan; 4(1):1-14. PubMed ID: 14975355 [TBL] [Abstract][Full Text] [Related]
18. CD4+ T cells but Not CD8+ or gammadelta+ lymphocytes are required for host protection against Mycobacterium avium infection and dissemination through the intestinal route. Petrofsky M; Bermudez LE Infect Immun; 2005 May; 73(5):2621-7. PubMed ID: 15845464 [TBL] [Abstract][Full Text] [Related]
20. Clinical and immunologic features of an atypical intracranial mycobacterium avium complex (MAC) infection compared with those of pulmonary MAC infections. Sadek M; Yue FY; Lee EY; Gyenes G; Jones RB; Hoffstein V; Munoz DG; Fong I; Ostrowski M Clin Vaccine Immunol; 2008 Oct; 15(10):1580-9. PubMed ID: 18701648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]