These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 11069634)

  • 1. Conditions for conjugative transposon transfer in Lactococcus lactis.
    Blaiotta G; Ercolini D; Simeoli E; Moschetti G; Villani F
    Lett Appl Microbiol; 2000 Nov; 31(5):343-8. PubMed ID: 11069634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intra- and interspecies conjugal transfer of Tn916-like elements from Lactococcus lactis in vitro and in vivo.
    Boguslawska J; Zycka-Krzesinska J; Wilcks A; Bardowski J
    Appl Environ Microbiol; 2009 Oct; 75(19):6352-60. PubMed ID: 19666731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of tet(M) in two Lactococcus lactis strains isolated from a Spanish traditional starter-free cheese made of raw milk and conjugative transfer of tetracycline resistance to lactococci and enterococci.
    Flórez AB; Ammor MS; Mayo B
    Int J Food Microbiol; 2008 Jan; 121(2):189-94. PubMed ID: 18068255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A host factor absent from Lactococcus lactis subspecies lactis MG1363 is required for conjugative transposition.
    Bringel F; Van Alstine GL; Scott JR
    Mol Microbiol; 1991 Dec; 5(12):2983-93. PubMed ID: 1667220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel sucrose transposons from plant strains of Lactococcus lactis.
    Kelly WJ; Davey GP; Ward LJ
    FEMS Microbiol Lett; 2000 Sep; 190(2):237-40. PubMed ID: 11034285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria.
    Bertram J; Strätz M; Dürre P
    J Bacteriol; 1991 Jan; 173(2):443-8. PubMed ID: 1846142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of horizontal gene transfer in Lactic acid bacteria--a comparison of mating techniques with a view to optimising conjugation conditions.
    Toomey N; Monaghan A; Fanning S; Bolton DJ
    J Microbiol Methods; 2009 Apr; 77(1):23-8. PubMed ID: 19135099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excision of the conjugative transposon Tn916 in Lactococcus lactis.
    Marra D; Smith JG; Scott JR
    Appl Environ Microbiol; 1999 May; 65(5):2230-1. PubMed ID: 10224024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular description and industrial potential of Tn6098 conjugative transfer conferring alpha-galactoside metabolism in Lactococcus lactis.
    Machielsen R; Siezen RJ; van Hijum SA; van Hylckama Vlieg JE
    Appl Environ Microbiol; 2011 Jan; 77(2):555-63. PubMed ID: 21115709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer of Tn916 between Lactococcus lactis subsp. lactis strains is nontranspositional: evidence for a chromosomal fertility function in strain MG1363.
    Bringel F; Van Alstine GL; Scott JR
    J Bacteriol; 1992 Sep; 174(18):5840-7. PubMed ID: 1325966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal diversity in Lactococcus lactis and the origin of dairy starter cultures.
    Kelly WJ; Ward LJ; Leahy SC
    Genome Biol Evol; 2010; 2():729-44. PubMed ID: 20847124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjugative transfer of the Lactococcus lactis sex factor and pRS01 plasmid to Enterococcus faecalis.
    Belhocine K; Mandilaras V; Yeung B; Cousineau B
    FEMS Microbiol Lett; 2007 Apr; 269(2):289-94. PubMed ID: 17263841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of an IS946-based composite transposon in Lactococcus lactis subsp. lactis.
    Romero DA; Klaenhammer TR
    J Bacteriol; 1991 Dec; 173(23):7599-606. PubMed ID: 1657893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of cadmium resistance on the phage-resistance plasmid pNP40 facilitates selection for its horizontal transfer to industrial dairy starter lactococci.
    Trotter M; Mills S; Ross RP; Fitzgerald GF; Coffey A
    Lett Appl Microbiol; 2001 Dec; 33(6):409-14. PubMed ID: 11737622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of Tn5307 exchange and intergeneric transfer of genes associated with nisin production.
    Broadbent JR; Sandine WE; Kondo JK
    Appl Microbiol Biotechnol; 1995 Dec; 44(1-2):139-46. PubMed ID: 8579827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer of conjugative plasmid pAM beta 1 from Lactococcus lactis to mouse intestinal bacteria.
    Igimi S; Ryu CH; Park SH; Sasaki Y; Sasaki T; Kumagai S
    Lett Appl Microbiol; 1996 Jul; 23(1):31-5. PubMed ID: 8679141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability analysis of the Lactococcus lactis DRC1 lactose plasmid using pulsed-field gel electrophoresis.
    Ward AC; Hillier AJ; Davidson BE; Powell IB
    Plasmid; 1993 Jan; 29(1):70-3. PubMed ID: 8441771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of lactococci isolated from minimally processed fresh fruit and vegetables.
    Kelly WJ; Davey GP; Ward LJ
    Int J Food Microbiol; 1998 Dec; 45(2):85-92. PubMed ID: 9924939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment.
    Cavanagh D; Fitzgerald GF; McAuliffe O
    Food Microbiol; 2015 May; 47():45-61. PubMed ID: 25583337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of antimicrobial resistance transfer between lactic acid bacteria and potential foodborne pathogens using in vitro methods and mating in a food matrix.
    Toomey N; Monaghan A; Fanning S; Bolton DJ
    Foodborne Pathog Dis; 2009 Oct; 6(8):925-33. PubMed ID: 19799525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.