These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 11069634)
21. Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. Rauch PJ; de Vos WM J Bacteriol; 1994 Apr; 176(8):2165-71. PubMed ID: 8157585 [TBL] [Abstract][Full Text] [Related]
22. Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. Rauch PJ; De Vos WM J Bacteriol; 1992 Feb; 174(4):1280-7. PubMed ID: 1310502 [TBL] [Abstract][Full Text] [Related]
23. Partial characterization of the genetic basis for sucrose metabolism and nisin production in Streptococcus lactis. Steele JL; McKay LL Appl Environ Microbiol; 1986 Jan; 51(1):57-64. PubMed ID: 3082279 [TBL] [Abstract][Full Text] [Related]
24. Transposons Tn916 and Tn925 can transfer from Enterococcus faecalis to Leuconostoc oenos. Zúñiga M; Pardo I; Ferrer S FEMS Microbiol Lett; 1996 Jan; 135(2-3):179-85. PubMed ID: 8595855 [TBL] [Abstract][Full Text] [Related]
25. Conjugative transfer of the Lactococcus lactis chromosomal sex factor promotes dissemination of the Ll.LtrB group II intron. Belhocine K; Yam KK; Cousineau B J Bacteriol; 2005 Feb; 187(3):930-9. PubMed ID: 15659671 [TBL] [Abstract][Full Text] [Related]
26. Transfer of antibiotic resistance marker genes between lactic acid bacteria in model rumen and plant environments. Toomey N; Monaghan A; Fanning S; Bolton D Appl Environ Microbiol; 2009 May; 75(10):3146-52. PubMed ID: 19270126 [TBL] [Abstract][Full Text] [Related]
27. Detection and classification of the integrative conjugative elements of Lactococcus lactis. van der Els S; Sheombarsing R; van Kempen T; Wels M; Boekhorst J; Bron PA; Kleerebezem M BMC Genomics; 2024 Apr; 25(1):324. PubMed ID: 38561675 [TBL] [Abstract][Full Text] [Related]
28. Phenotypic and genotypic characteristics of Lactococcus lactis strains isolated from different ecosystems. Gutiérrez-Méndez N; Rodríguez-Figueroa JC; González-Córdova AF; Nevárez-Moorillón GV; Rivera-Chavira B; Vallejo-Cordoba B Can J Microbiol; 2010 May; 56(5):432-9. PubMed ID: 20555405 [TBL] [Abstract][Full Text] [Related]
29. Conjugative transposition of Tn916: preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate. Scott JR; Bringel F; Marra D; Van Alstine G; Rudy CK Mol Microbiol; 1994 Mar; 11(6):1099-108. PubMed ID: 8022279 [TBL] [Abstract][Full Text] [Related]
30. Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. Klaenhammer TR; Sanozky RB J Gen Microbiol; 1985 Jun; 131(6):1531-41. PubMed ID: 3930657 [TBL] [Abstract][Full Text] [Related]
31. Conjugal transfer of plasmid pIP501 from Lactococcus lactis to Lactobacillus delbrückii subsp. bulgaricus and Lactobacillus helveticus. Langella P; Chopin A FEMS Microbiol Lett; 1989 Jul; 51(1):149-52. PubMed ID: 2506107 [TBL] [Abstract][Full Text] [Related]
32. Phenotypic and genetic diversity of Lactococcus lactis and Enterococcus spp. strains isolated from Northern Spain starter-free farmhouse cheeses. Delgado S; Mayo B Int J Food Microbiol; 2004 Feb; 90(3):309-19. PubMed ID: 14751686 [TBL] [Abstract][Full Text] [Related]
33. Genomic organization of Lactococci. Davidson BE; Kordias N; Baseggio N; Lim A; Dobos M; Hillier AJ Dev Biol Stand; 1995; 85():411-22. PubMed ID: 8586212 [TBL] [Abstract][Full Text] [Related]
34. Nisin and lacticin 481 coproduction by Lactococcus lactis strains isolated from raw ewes' milk. Bravo D; Rodríguez E; Medina M J Dairy Sci; 2009 Oct; 92(10):4805-11. PubMed ID: 19762795 [TBL] [Abstract][Full Text] [Related]
35. Genetics of the nisin operon and the sucrose-nisin conjugative transposon Tn5276. De Vos WM; Beerthuyzen MM; Luesink EL; Kuipers OP Dev Biol Stand; 1995; 85():617-25. PubMed ID: 8586240 [No Abstract] [Full Text] [Related]
36. Plasmid-mediated oligopeptide transport system in lactococci. Yu W; Gillies K; Kondo JK; Broadbent JR; McKay LL Dev Biol Stand; 1995; 85():509-21. PubMed ID: 8586224 [No Abstract] [Full Text] [Related]
37. Identification and characterization of tetracycline resistance in Lactococcus lactis isolated from Polish raw milk and fermented artisanal products. Zycka-Krzesinska J; Boguslawska J; Aleksandrzak-Piekarczyk T; Jopek J; Bardowski JK Int J Food Microbiol; 2015 Oct; 211():134-41. PubMed ID: 26204235 [TBL] [Abstract][Full Text] [Related]
38. A standardized conjugation protocol to asses antibiotic resistance transfer between lactococcal species. Lampkowska J; Feld L; Monaghan A; Toomey N; Schjørring S; Jacobsen B; van der Voet H; Andersen SR; Bolton D; Aarts H; Krogfelt KA; Wilcks A; Bardowski J Int J Food Microbiol; 2008 Sep; 127(1-2):172-5. PubMed ID: 18675485 [TBL] [Abstract][Full Text] [Related]
39. Conjugative plasmid pIP501 undergoes specific deletions after transfer from Lactococcus lactis to Oenococcus oeni. Zúñiga M; Pardo I; Ferrer S Arch Microbiol; 2003 Nov; 180(5):367-73. PubMed ID: 14504693 [TBL] [Abstract][Full Text] [Related]