BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11069681)

  • 1. Both transmembrane domains of SecG contribute to signal sequence recognition by the Escherichia coli protein export machinery.
    Bost S; Silva F; Rudaz C; Belin D
    Mol Microbiol; 2000 Nov; 38(3):575-87. PubMed ID: 11069681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new genetic selection identifies essential residues in SecG, a component of the Escherichia coli protein export machinery.
    Bost S; Belin D
    EMBO J; 1995 Sep; 14(18):4412-21. PubMed ID: 7556084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. prl mutations in the Escherichia coli secG gene.
    Bost S; Belin D
    J Biol Chem; 1997 Feb; 272(7):4087-93. PubMed ID: 9020118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel class of secA alleles that exert a signal-sequence-dependent effect on protein export in Escherichia coli.
    Khatib K; Belin D
    Genetics; 2002 Nov; 162(3):1031-43. PubMed ID: 12454053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli SecG is required for residual export mediated by mutant signal sequences and for SecY-SecE complex stability.
    Belin D; Plaia G; Boulfekhar Y; Silva F
    J Bacteriol; 2015 Feb; 197(3):542-52. PubMed ID: 25404704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SecG is an auxiliary component of the protein export apparatus of Escherichia coli.
    Flower AM; Hines LL; Pfennig PL
    Mol Gen Genet; 2000 Feb; 263(1):131-6. PubMed ID: 10732681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. secG and temperature modulate expression of azide-resistant and signal sequence suppressor phenotypes of Escherichia coli secA mutants.
    Ramamurthy V; DapĂ­c V; Oliver D
    J Bacteriol; 1998 Dec; 180(23):6419-23. PubMed ID: 9829959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase.
    Prinz WA; Spiess C; Ehrmann M; Schierle C; Beckwith J
    EMBO J; 1996 Oct; 15(19):5209-17. PubMed ID: 8895566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of the conserved cytoplasmic region and non-conserved carboxy-terminal region of SecE in Escherichia coli protein translocase.
    Kontinen VP; Yamanaka M; Nishiyama K; Tokuda H
    J Biochem; 1996 Jun; 119(6):1124-30. PubMed ID: 8827448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of transmembrane regions 3 and 4 of SecY, a central component of protein translocase.
    Mori H; Shimokawa N; Satoh Y; Ito K
    J Bacteriol; 2004 Jun; 186(12):3960-9. PubMed ID: 15175310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SecG function and phospholipid metabolism in Escherichia coli.
    Flower AM
    J Bacteriol; 2001 Mar; 183(6):2006-12. PubMed ID: 11222599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The secG deletion mutation of Escherichia coli is suppressed by expression of a novel regulatory gene of Bacillus subtilis.
    Kontinen VP; Helander IM; Tokuda H
    FEBS Lett; 1996 Jul; 389(3):281-4. PubMed ID: 8766716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential interaction of Sec-G with Sec-E stabilizes an unstable Sec-E derivative in the Escherichia coli cytoplasmic membrane.
    Nishiyama K; Mizushima S; Tokuda H
    Biochem Biophys Res Commun; 1995 Dec; 217(1):217-23. PubMed ID: 8526914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of gpsA encoding biosynthetic sn-glycerol 3-phosphate dehydrogenase suppresses both the LB- phenotype of a secB null mutant and the cold-sensitive phenotype of a secG null mutant.
    Shimizu H; Nishiyama K; Tokuda H
    Mol Microbiol; 1997 Dec; 26(5):1013-21. PubMed ID: 9426138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional activity of eukaryotic signal sequences in Escherichia coli: the ovalbumin family of serine protease inhibitors.
    Belin D; Guzman LM; Bost S; Konakova M; Silva F; Beckwith J
    J Mol Biol; 2004 Jan; 335(2):437-53. PubMed ID: 14672654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two SecG molecules present in a single protein translocation machinery are functional even after crosslinking.
    Nagamori S; Nishiyama K; Tokuda H
    J Biochem; 2000 Jul; 128(1):129-37. PubMed ID: 10876167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Interaction of SecB and SecA with the N-terminal region of mature alkaline phosphatase on its secretion in Escherichia coli].
    Khokhlova OV; Nesmeianova MA
    Mol Biol (Mosk); 2003; 37(4):712-8. PubMed ID: 12942645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nearest neighbor analysis of the SecYEG complex. 1. Identification of a SecY-SecG interface.
    Satoh Y; Matsumoto G; Mori H; Ito K
    Biochemistry; 2003 Jun; 42(24):7434-41. PubMed ID: 12809499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled structure changes of SecA and SecG revealed by the synthetic lethality of the secAcsR11 and delta secG::kan double mutant.
    Suzuki H; Nishiyama K; Tokuda H
    Mol Microbiol; 1998 Jul; 29(1):331-41. PubMed ID: 9701825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane topology of the N-terminus of the Escherichia coli FtsK division protein.
    Dorazi R; Dewar SJ
    FEBS Lett; 2000 Jul; 478(1-2):13-8. PubMed ID: 10922461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.