These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 11070046)

  • 1. Nucleotide bias causes a genomewide bias in the amino acid composition of proteins.
    Singer GA; Hickey DA
    Mol Biol Evol; 2000 Nov; 17(11):1581-8. PubMed ID: 11070046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content.
    Singer GA; Hickey DA
    Gene; 2003 Oct; 317(1-2):39-47. PubMed ID: 14604790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraint on di-nucleotides by codon usage bias in bacterial genomes.
    Satapathy SS; Powdel BR; Dutta M; Buragohain AK; Ray SK
    Gene; 2014 Feb; 536(1):18-28. PubMed ID: 24333347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Codon usage between genomes is constrained by genome-wide mutational processes.
    Chen SL; Lee W; Hottes AK; Shapiro L; McAdams HH
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3480-5. PubMed ID: 14990797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes.
    Echols N; Harrison P; Balasubramanian S; Luscombe NM; Bertone P; Zhang Z; Gerstein M
    Nucleic Acids Res; 2002 Jun; 30(11):2515-23. PubMed ID: 12034841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid and nucleotide recurrence in aligned sequences: synonymous substitution patterns in association with global and local base compositions.
    Nishizawa M; Nishizawa K
    Nucleic Acids Res; 2000 Oct; 28(19):3801-10. PubMed ID: 11000273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomic analysis for nucleotide, codon, and amino acid usage patterns of mycoplasmas.
    Ma XX; Cao X; Ma P; Chang QY; Li LJ; Zhou XK; Zhang DR; Li MS; Ma ZR
    J Basic Microbiol; 2018 May; 58(5):425-439. PubMed ID: 29537653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GC content-independent amino acid patterns in bacteria and archaea.
    Schmidt A; Rzanny M; Schmidt A; Hagen M; Schütze E; Kothe E
    J Basic Microbiol; 2012 Apr; 52(2):195-205. PubMed ID: 21780150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide composition as a driving force in the evolution of retroviruses.
    Bronson EC; Anderson JN
    J Mol Evol; 1994 May; 38(5):506-32. PubMed ID: 8028030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the species-specificity in genomic signatures, synonymous codon choice, amino acid usage and G+C content.
    Sandberg R; Bränden CI; Ernberg I; Cöster J
    Gene; 2003 Jun; 311():35-42. PubMed ID: 12853136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation.
    Das S; Paul S; Bag SK; Dutta C
    BMC Genomics; 2006 Jul; 7():186. PubMed ID: 16869956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes.
    Knight RD; Freeland SJ; Landweber LF
    Genome Biol; 2001; 2(4):RESEARCH0010. PubMed ID: 11305938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the relationship between genomic GC Content and patterns of base usage, codon usage and amino acid usage in prokaryotes: similar GC content adopts similar compositional frequencies regardless of the phylogenetic lineages.
    Zhou HQ; Ning LW; Zhang HX; Guo FB
    PLoS One; 2014; 9(9):e107319. PubMed ID: 25255224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A universal trend of amino acid gain and loss in protein evolution.
    Jordan IK; Kondrashov FA; Adzhubei IA; Wolf YI; Koonin EV; Kondrashov AS; Sunyaev S
    Nature; 2005 Feb; 433(7026):633-8. PubMed ID: 15660107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Codon bias signatures, organization of microorganisms in codon space, and lifestyle.
    Carbone A; Képès F; Zinovyev A
    Mol Biol Evol; 2005 Mar; 22(3):547-61. PubMed ID: 15537809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organisms can essentially be classified according to two codon patterns.
    Okayasu T; Sorimachi K
    Amino Acids; 2009 Feb; 36(2):261-71. PubMed ID: 18379857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greater GNN pattern bias in sequence elements encoding conserved residues of ancient proteins may be an indicator of amino acid composition of early proteins.
    Brooks DJ; Fresco JR
    Gene; 2003 Jan; 303():177-85. PubMed ID: 12559579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of thermophilic species by the amino acid compositions deduced from their genomes.
    Kreil DP; Ouzounis CA
    Nucleic Acids Res; 2001 Apr; 29(7):1608-15. PubMed ID: 11266564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the compositional biases in Plasmodium falciparum genome and proteome using Arabidopsis thaliana as a reference.
    Bastien O; Lespinats S; Roy S; Métayer K; Fertil B; Codani JJ; Maréchal E
    Gene; 2004 Jul; 336(2):163-73. PubMed ID: 15246528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlations between nucleotide frequencies and amino acid composition in 115 bacterial species.
    Bharanidharan D; Bhargavi GR; Uthanumallian K; Gautham N
    Biochem Biophys Res Commun; 2004 Mar; 315(4):1097-103. PubMed ID: 14985126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.