These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 11070344)
1. Complex I of winter wheat mitochondria respiratory chain is the most sensitive to uncoupling action of plant stress-related uncoupling protein CSP 310. Grabelnych OI; Pobezhimova TP; Kolesnichenko AV; Voinikov VK J Therm Biol; 2001 Feb; 26(1):47-53. PubMed ID: 11070344 [TBL] [Abstract][Full Text] [Related]
2. Non-phosphorylating bypass of the plant mitochondrial respiratory chain by stress protein CSP 310. Kolesnichenko AV; Grabelnych OI; Pobezhimova TP; Voinikov VK Planta; 2005 Apr; 221(1):113-22. PubMed ID: 15668769 [TBL] [Abstract][Full Text] [Related]
3. An influence of antiserum against winter wheat stress uncoupling protein, CSP 310, on energetic activity of some plant species mitochondria. Kolesnichenko AV; Grabelnych OI; Sumina ON; Pobezhimova TP; Voinikov VK J Immunoassay Immunochem; 2001; 22(1):75-83. PubMed ID: 11486820 [TBL] [Abstract][Full Text] [Related]
4. An influence of stress protein CSP 310 and antiserum against this protein on lipid peroxidation in cereal mitochondria. Kolesnichenko AV; Grabelnych OI; Tourchaninova VV; Zykova VV; Koroleva NA; Pobezhimova TP; Voinikov VK J Immunoassay Immunochem; 2001; 22(2):113-26. PubMed ID: 11486810 [TBL] [Abstract][Full Text] [Related]
5. The comparison of uncoupling activity of constituently synthesised and stress-induced forms of winter rye stress uncoupling protein CSP 310. Pobezhimova TP; Grabelnych OI; Kolesnichenko AV; Voinikov VK J Therm Biol; 2001 Apr; 26(2):95-101. PubMed ID: 11163924 [TBL] [Abstract][Full Text] [Related]
7. Influence of stress protein CSP 310 and antiserum against this protein on oxygen uptake, lipid peroxidation, and temperature of winter wheat seedling shoots during cold stress. Kolesnichenko AV; Grabelnych OI; Tourchaninova VV; Zykova VV; Koroleva NA; Pobezhimova TP; Korzun AM; Voinikov VK J Immunoassay Immunochem; 2003; 24(1):41-55. PubMed ID: 12680606 [TBL] [Abstract][Full Text] [Related]
8. Stress protein CSP 310 causes oxidation and phosphorylation uncoupling during low-temperature stress only in cereal but not in dycotyledon mitochondria. Grabelnych OI; Pobezhimova TP; Kolesnichenko AV; Voinikov VK J Immunoassay Immunochem; 2001; 22(3):275-87. PubMed ID: 11506277 [TBL] [Abstract][Full Text] [Related]
9. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial uncoupling proteins: new insights from functional and proteomic studies. Douette P; Sluse FE Free Radic Biol Med; 2006 Apr; 40(7):1097-107. PubMed ID: 16545677 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. Grabelnych OI; Borovik OA; Tauson EL; Pobezhimova TP; Katyshev AI; Pavlovskaya NS; Koroleva NA; Lyubushkina IV; Bashmakov VY; Popov VN; Borovskii GB; Voinikov VK Biochemistry (Mosc); 2014 Jun; 79(6):506-19. PubMed ID: 25100008 [TBL] [Abstract][Full Text] [Related]
12. The search for proteins with immunochemical affinity to plant stress proteins at cold-adapted endemic Baikal fishes. Ostroumova EA; Ostroumov VA; Sumina ON; Misharin SI; Antipina AI; Grabelnych OI; Zykova VV; Pobezhimova TP; Kolesnichenko AV J Therm Biol; 2001 Jun; 26(3):209-214. PubMed ID: 11240227 [TBL] [Abstract][Full Text] [Related]
13. Alternative mitochondrial respiratory chains from two crustaceans: Artemia franciscana nauplii and the white shrimp, Litopenaeus vannamei. Rodriguez-Armenta C; Uribe-Carvajal S; Rosas-Lemus M; Chiquete-Felix N; Huerta-Ocampo JA; Muhlia-Almazan A J Bioenerg Biomembr; 2018 Apr; 50(2):143-152. PubMed ID: 29594796 [TBL] [Abstract][Full Text] [Related]
14. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Schönfeld P; Wojtczak L Biochim Biophys Acta; 2007 Aug; 1767(8):1032-40. PubMed ID: 17588527 [TBL] [Abstract][Full Text] [Related]
15. Targeted mitochondrial uncoupling beyond UCP1 - The fine line between death and metabolic health. Ost M; Keipert S; Klaus S Biochimie; 2017 Mar; 134():77-85. PubMed ID: 27916644 [TBL] [Abstract][Full Text] [Related]
16. Effect of fatty acids on energy coupling processes in mitochondria. Wojtczak L; Schönfeld P Biochim Biophys Acta; 1993 Nov; 1183(1):41-57. PubMed ID: 8399375 [TBL] [Abstract][Full Text] [Related]
17. Antioxidant activity by a synergy of redox-sensitive mitochondrial phospholipase A2 and uncoupling protein-2 in lung and spleen. Jabůrek M; Ježek J; Zelenka J; Ježek P Int J Biochem Cell Biol; 2013 Apr; 45(4):816-25. PubMed ID: 23354121 [TBL] [Abstract][Full Text] [Related]
18. Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain. Kowaltowski AJ; Costa AD; Vercesi AE FEBS Lett; 1998 Mar; 425(2):213-6. PubMed ID: 9559650 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation. Hatefi Y; Hanstein WG; Galante Y; Stiggall DL Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889 [TBL] [Abstract][Full Text] [Related]
20. Certain aspects of uncoupling due to mitochondrial uncoupling proteins in vitro and in vivo. Dlasková A; Spacek T; Skobisová E; Santorová J; Jezek P Biochim Biophys Acta; 2006; 1757(5-6):467-73. PubMed ID: 16781660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]