These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11070811)

  • 21. [The development and status of bioartificial liver].
    Li GL; Wang SM
    Zhonghua Wai Ke Za Zhi; 2017 Dec; 55(12):957-959. PubMed ID: 29224272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial liver support: future aspects.
    Naruse K
    J Artif Organs; 2005; 8(2):71-6. PubMed ID: 16094509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells.
    Sakiyama R; Blau BJ; Miki T
    World J Gastroenterol; 2017 Mar; 23(11):1974-1979. PubMed ID: 28373763
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracorporeal artificial liver support in hepatic failure: pathfinder, bridge to recovery or dead end street?
    Fuhrmann V; Derfler K; Trauner M
    Liver Int; 2011 Sep; 31 Suppl 3():iv. PubMed ID: 21824273
    [No Abstract]   [Full Text] [Related]  

  • 25. Metabolic activity and clinical efficacy of animal and human hepatocytes in bioartificial support systems for acute liver failure.
    Riordan SM; Skouteris GG; Williams R
    Int J Artif Organs; 1998 Jun; 21(6):312-8. PubMed ID: 9714023
    [No Abstract]   [Full Text] [Related]  

  • 26. A clinical-scale BioArtificial Liver, developed for GMP, improved clinical parameters of liver function in porcine liver failure.
    Selden C; Bundy J; Erro E; Puschmann E; Miller M; Kahn D; Hodgson H; Fuller B; Gonzalez-Molina J; Le Lay A; Gibbons S; Chalmers S; Modi S; Thomas A; Kilbride P; Isaacs A; Ginsburg R; Ilsley H; Thomson D; Chinnery G; Mankahla N; Loo L; Spearman CW
    Sci Rep; 2017 Nov; 7(1):14518. PubMed ID: 29109530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The bioartificial kidney.
    Buffington DA; Westover AJ; Johnston KA; Humes HD
    Transl Res; 2014 Apr; 163(4):342-51. PubMed ID: 24269374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liver support strategies: cutting-edge technologies.
    Struecker B; Raschzok N; Sauer IM
    Nat Rev Gastroenterol Hepatol; 2014 Mar; 11(3):166-76. PubMed ID: 24166083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New approaches to supporting the failing liver.
    Cao S; Esquivel CO; Keeffe EB
    Annu Rev Med; 1998; 49():85-94. PubMed ID: 9509251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial liver support: quo vadis?
    Rozga J; Malkowski P
    Ann Transplant; 2010; 15(4):92-101. PubMed ID: 21183883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The technology of biological extracorporeal liver assist devices: from infancy to adolescence.
    Jauregui HO
    Artif Organs; 1997 Nov; 21(11):1163-8. PubMed ID: 9384320
    [No Abstract]   [Full Text] [Related]  

  • 32. Artificial liver support in the third millennium.
    Chamuleau RA
    Artif Cells Blood Substit Immobil Biotechnol; 2003 May; 31(2):117-26. PubMed ID: 12751830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Critical care apheresis: hepatic failure.
    Wiles CE
    Ther Apher; 1999 Feb; 3(1):31-3. PubMed ID: 10079803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The therapeutic effect and difficulty in clinic application of bioartificial liver].
    XIN SJ; LIU HL
    Zhonghua Gan Zang Bing Za Zhi; 2009 May; 17(5):328-9. PubMed ID: 19497193
    [No Abstract]   [Full Text] [Related]  

  • 35. The bioartificial kidney and bioengineered membranes in acute kidney injury.
    Ding F; Humes HD
    Nephron Exp Nephrol; 2008; 109(4):e118-22. PubMed ID: 18802374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo efficacy of a bioartificial liver in improving spontaneous recovery from fulminant hepatic failure: a controlled study in pigs.
    Cuervas-Mons V; Colás A; Rivera JA; Prados E
    Transplantation; 2000 Feb; 69(3):337-44. PubMed ID: 10706039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioengineering Organs for Blood Detoxification.
    Legallais C; Kim D; Mihaila SM; Mihajlovic M; Figliuzzi M; Bonandrini B; Salerno S; Yousef Yengej FA; Rookmaaker MB; Sanchez Romero N; Sainz-Arnal P; Pereira U; Pasqua M; Gerritsen KGF; Verhaar MC; Remuzzi A; Baptista PM; De Bartolo L; Masereeuw R; Stamatialis D
    Adv Healthc Mater; 2018 Nov; 7(21):e1800430. PubMed ID: 30230709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of cytokine response and survival time by bioartificial kidney therapy in acute uremic pigs with multi-organ dysfunction.
    Wang H; Zhang M; Wang X; Mao H; Ying X; Zhu W; Sun C; Jiang C
    Int J Artif Organs; 2010 Aug; 33(8):526-34. PubMed ID: 20872347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue engineering the kidney.
    Hammerman MR
    Kidney Int; 2003 Apr; 63(4):1195-204. PubMed ID: 12631335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioartificial organ grafts: a view at the beginning of the third millennium.
    Hunkeler D; Rajotte R; Grey D; Morel P; Skjak-Break G; Korbutt G; Gill R; Oberholzer J
    Artif Cells Blood Substit Immobil Biotechnol; 2003 Nov; 31(4):365-82. PubMed ID: 14672414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.