BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11070879)

  • 21. Fluorescence correlation methods for imaging cellular behavior of sphingolipid-interacting probes.
    Kraut R; Bag N; Wohland T
    Methods Cell Biol; 2012; 108():395-427. PubMed ID: 22325612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transglycosylation-based fluorescent labeling of 6-gala series glycolipids by endogalactosylceramidase.
    Ishibashi Y; Nagamatsu Y; Meyer S; Imamura A; Ishida H; Kiso M; Okino N; Geyer R; Ito M
    Glycobiology; 2009 Jul; 19(7):797-807. PubMed ID: 19389917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solid-phase synthesis of Rhodamine-110 fluorogenic substrates and their application in forensic analysis.
    Gooch J; Abbate V; Daniel B; Frascione N
    Analyst; 2016 Apr; 141(8):2392-5. PubMed ID: 27027574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring Sphingolipid Trafficking in Cells using Fluorescence Microscopy.
    Sundberg EL; Deng Y; Burd CG
    Curr Protoc Cell Biol; 2019 Mar; 82(1):e67. PubMed ID: 30246944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assay of enzymes of lipid metabolism with colored and fluorescent derivatives of natural lipids.
    Gatt S; Barenholz Y; Goldberg R; Dinur T; Besley G; Leibovitz-Ben Gershon Z; Rosenthal J; Desnick RJ; Devine EA; Shafit-Zagardo B; Tsuruki F
    Methods Enzymol; 1981; 72():351-75. PubMed ID: 6273689
    [No Abstract]   [Full Text] [Related]  

  • 26. Glycosphingolipids in secondary lysosomes prepared from rat liver.
    Huterer S; Wherrett JR
    Can J Biochem; 1974 Jun; 52(6):507-13. PubMed ID: 4367464
    [No Abstract]   [Full Text] [Related]  

  • 27. Analysis of Sphingolipid Synthesis and Transport by Metabolic Labeling of Cultured Cells with [³H]Serine.
    Ridgway ND
    Methods Mol Biol; 2016; 1376():195-202. PubMed ID: 26552685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic cytometry. Glycosphingolipid metabolism in single cells.
    Whitmore CD; Hindsgaul O; Palcic MM; Schnaar RL; Dovichi NJ
    Anal Chem; 2007 Jul; 79(14):5139-42. PubMed ID: 17567107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New fluorinated rhodamines for optical microscopy and nanoscopy.
    Mitronova GY; Belov VN; Bossi ML; Wurm CA; Meyer L; Medda R; Moneron G; Bretschneider S; Eggeling C; Jakobs S; Hell SW
    Chemistry; 2010 Apr; 16(15):4477-88. PubMed ID: 20309973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-performance liquid affinity chromatography and in situ fluorescent labeling on thin-layer chromatography of glycosphingolipids.
    Tomono Y; Abe K; Watanabe K
    Anal Biochem; 1990 Feb; 184(2):360-8. PubMed ID: 2327579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Masked rhodamine dyes of five principal colors revealed by photolysis of a 2-diazo-1-indanone caging group: synthesis, photophysics, and light microscopy applications.
    Belov VN; Mitronova GY; Bossi ML; Boyarskiy VP; Hebisch E; Geisler C; Kolmakov K; Wurm CA; Willig KI; Hell SW
    Chemistry; 2014 Oct; 20(41):13162-73. PubMed ID: 25196166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel fluorescent fatty acid, 5-methyl-BDY-3-dodecanoic acid, is a potential probe in lipid transport studies by incorporating selectively to lipid classes of BHK cells.
    Kasurinen J
    Biochem Biophys Res Commun; 1992 Sep; 187(3):1594-601. PubMed ID: 1417832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic cytometry: capillary electrophoresis with two-color fluorescence detection for the simultaneous study of two glycosphingolipid metabolic pathways in single primary neurons.
    Essaka DC; Prendergast J; Keithley RB; Palcic MM; Hindsgaul O; Schnaar RL; Dovichi NJ
    Anal Chem; 2012 Mar; 84(6):2799-804. PubMed ID: 22400492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amplification of a FRET Probe by Lipid-Water Partition for the Detection of Acid Sphingomyelinase in Live Cells.
    Pinkert T; Furkert D; Korte T; Herrmann A; Arenz C
    Angew Chem Int Ed Engl; 2017 Mar; 56(10):2790-2794. PubMed ID: 28156033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorometric detection of glycosphingolipids on thin-layer chromatographic plates.
    Watanabe K; Mizuta M
    J Lipid Res; 1995 Aug; 36(8):1848-55. PubMed ID: 7595105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion.
    Hackstadt T; Scidmore MA; Rockey DD
    Proc Natl Acad Sci U S A; 1995 May; 92(11):4877-81. PubMed ID: 7761416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene expression of sphingolipid metabolism pathways is altered in hidradenitis suppurativa.
    Dany M; Elston D
    J Am Acad Dermatol; 2017 Aug; 77(2):268-273.e6. PubMed ID: 28551069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of fluorescence-labeled GM1 and sphingomyelin by the reverse hydrolysis reaction of sphingolipid ceramide N-deacylase as substrates for assay of sphingolipid-degrading enzymes and for detection of sphingolipid-binding proteins.
    Nakagawa T; Tani M; Kita K; Ito M
    J Biochem; 1999 Sep; 126(3):604-11. PubMed ID: 10467178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of BODIPY-labeled sphingolipids to study membrane traffic along the endocytic pathway.
    Pagano RE; Chen CS
    Ann N Y Acad Sci; 1998 Jun; 845():152-60. PubMed ID: 9668349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analyses of glycosphingolipids by high-performance liquid chromatography.
    Müthing J
    Methods Enzymol; 2000; 312():45-64. PubMed ID: 11070862
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.