These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11071349)

  • 1. Parameters affecting specimen flatness of two-dimensional crystals for electron crystallography.
    Vonck J
    Ultramicroscopy; 2000 Nov; 85(3):123-9. PubMed ID: 11071349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specimen flatness of thin crystalline arrays: influence of the substrate.
    Glaeser RM
    Ultramicroscopy; 1992 Oct; 46(1-4):33-43. PubMed ID: 1481276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimizing Crinkling of Soft Specimens Using Holey Gold Films on Molybdenum Grids for Cryogenic Electron Microscopy.
    Jiang X; Xuan S; Zuckermann RN; Glaeser RM; Downing KH; Balsara NP
    Microsc Microanal; 2021 Aug; 27(4):767-775. PubMed ID: 34085628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grid preparation for cryo-electron microscopy.
    Gyobu N
    Methods Mol Biol; 2013; 955():119-28. PubMed ID: 23132058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryo-crinkling: what happens to carbon films on copper grids at low temperature.
    Booy FP; Pawley JB
    Ultramicroscopy; 1993 Mar; 48(3):273-80. PubMed ID: 8475597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron crystallography of membrane proteins.
    Chou HT; Evans JE; Stahlberg H
    Methods Mol Biol; 2007; 369():331-43. PubMed ID: 17656758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryo-electron microscopy of membrane proteins.
    Goldie KN; Abeyrathne P; Kebbel F; Chami M; Ringler P; Stahlberg H
    Methods Mol Biol; 2014; 1117():325-41. PubMed ID: 24357370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved specimen preparation for cryo-electron microscopy using a symmetric carbon sandwich technique.
    Gyobu N; Tani K; Hiroaki Y; Kamegawa A; Mitsuoka K; Fujiyoshi Y
    J Struct Biol; 2004 Jun; 146(3):325-33. PubMed ID: 15099574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved transfer of two-dimensional crystals from the air/water interface to specimen support grids for high-resolution analysis by electron microscopy.
    Kubalek EW; Kornberg RD; Darst SA
    Ultramicroscopy; 1991 Jun; 35(3-4):295-304. PubMed ID: 1926634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformed grids for single-particle cryo-electron microscopy of specimens exhibiting a preferred orientation.
    Liu Y; Meng X; Liu Z
    J Struct Biol; 2013 Jun; 182(3):255-8. PubMed ID: 23537848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron cryo-microscopy of biological specimens on conductive titanium-silicon metal glass films.
    Rhinow D; Kühlbrandt W
    Ultramicroscopy; 2008 Jun; 108(7):698-705. PubMed ID: 18164549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron cryomicroscopy of membrane proteins: specimen preparation for two-dimensional crystals and single particles.
    Schmidt-Krey I; Rubinstein JL
    Micron; 2011 Feb; 42(2):107-16. PubMed ID: 20678942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specimen flatness of glucose-embedded biological materials for electron crystallography is affected significantly by the choice of carbon evaporation stock.
    Han BG; Wolf SG; Vonck J; Glaeser RM
    Ultramicroscopy; 1994 Jul; 55(1):1-5. PubMed ID: 7974847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon sandwich preparation preserves quality of two-dimensional crystals for cryo-electron microscopy.
    Yang F; Abe K; Tani K; Fujiyoshi Y
    Microscopy (Oxf); 2013 Dec; 62(6):597-606. PubMed ID: 23883606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Measurement of the Liquid Amount in Cryo-Electron Microscopy Grids Using Laser Diffraction of Regular 2-D Holes of the Grids.
    Ahn J; Lee D; Jo I; Jeong H; Hyun JK; Woo JS; Choi SH; Ha NC
    Mol Cells; 2020 Mar; 43(3):298-303. PubMed ID: 32150795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial energies and surface-tension forces involved in the preparation of thin, flat crystals of biological macromolecules for high-resolution electron microscopy.
    Glaeser RM; Zilker A; Radermacher M; Gaub HE; Hartmann T; Baumeister W
    J Microsc; 1991 Jan; 161(Pt 1):21-45. PubMed ID: 2016735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Merging of image data in electron crystallography.
    Arheit M; Castaño-Diéz D; Thierry R; Abeyrathne P; Gipson BR; Stahlberg H
    Methods Mol Biol; 2013; 955():195-209. PubMed ID: 23132062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D Electron Crystallography of Membrane Protein Single-, Double-, and Multi-Layered Ordered Arrays.
    Johnson MC; Uddin YM; Neselu K; Schmidt-Krey I
    Methods Mol Biol; 2021; 2215():227-245. PubMed ID: 33368006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing "self-wicking" nanowire grids.
    Wei H; Dandey VP; Zhang Z; Raczkowski A; Rice WJ; Carragher B; Potter CS
    J Struct Biol; 2018 May; 202(2):170-174. PubMed ID: 29317278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray diffraction from a single layer of purple membrane at the air/water interface.
    Verclas SA; Howes PB; Kjaer K; Wurlitzer A; Weygand M; Büldt G; Dencher NA; Lösche M
    J Mol Biol; 1999 Apr; 287(5):837-43. PubMed ID: 10222193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.