These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11071599)

  • 1. Bioabsorbable scaffolds for guided bone regeneration and generation.
    Kellomäki M; Niiranen H; Puumanen K; Ashammakhi N; Waris T; Törmälä P
    Biomaterials; 2000 Dec; 21(24):2495-505. PubMed ID: 11071599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pliable polylactide plates for guided bone regeneration: manufacturing and in vitro.
    Kellomäki M; Paasimaa S; Törmälä P
    Proc Inst Mech Eng H; 2000; 214(6):615-29. PubMed ID: 11201409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo behavior of self-reinforced bioabsorbable polymer and self-reinforced bioabsorbable polymer/bioactive glass composites.
    Niiranen H; Pyhältö T; Rokkanen P; Kellomäki M; Törmälä P
    J Biomed Mater Res A; 2004 Jun; 69(4):699-708. PubMed ID: 15162412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of human primary osteoblast response on bioactive glass (BaG 13-93)- coated poly-L,DL-lactide (SR-PLA70) surface in vitro.
    Ruuttila P; Niiranen H; Kellomäki M; Törmälä P; Konttinen YT; Hukkanen M
    J Biomed Mater Res B Appl Biomater; 2006 Jul; 78(1):97-104. PubMed ID: 16292763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity.
    Niemelä T; Niiranen H; Kellomäki M; Törmälä P
    Acta Biomater; 2005 Mar; 1(2):235-42. PubMed ID: 16701800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injectable bioactive glass/biodegradable polymer composite for bone and cartilage reconstruction: concept and experimental outcome with thermoplastic composites of poly(epsilon-caprolactone-co-D,L-lactide) and bioactive glass S53P4.
    Aho AJ; Tirri T; Kukkonen J; Strandberg N; Rich J; Seppälä J; Yli-Urpo A
    J Mater Sci Mater Med; 2004 Oct; 15(10):1165-73. PubMed ID: 15516880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved dimensional stability with bioactive glass fibre skeleton in poly(lactide-co-glycolide) porous scaffolds for tissue engineering.
    Haaparanta AM; Uppstu P; Hannula M; Ellä V; Rosling A; Kellomäki M
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():457-66. PubMed ID: 26249615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites.
    Liu A; Hong Z; Zhuang X; Chen X; Cui Y; Liu Y; Jing X
    Acta Biomater; 2008 Jul; 4(4):1005-15. PubMed ID: 18359672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable mesoporous bioactive glass nanospheres for drug delivery and bone tissue regeneration.
    Wang X; Li W
    Nanotechnology; 2016 Jun; 27(22):225102. PubMed ID: 27102805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite.
    Yazdimamaghani M; Razavi M; Vashaee D; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():436-444. PubMed ID: 25686970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel bioabsorbable composite membrane of Polyactive 70/30 and bioactive glass number 13--93 in repair of experimental maxillary alveolar cleft defects.
    Puumanen K; Kellomäki M; Ritsilä V; Böhling T; Törmälä P; Waris T; Ashammakhi N
    J Biomed Mater Res B Appl Biomater; 2005 Oct; 75(1):25-33. PubMed ID: 16015617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fixation of distal femoral osteotomies with self-reinforced poly(L/DL)lactide 70:30 and self-reinforced poly(L/DL)lactide 70: 30/bioactive glass composite rods. an experimental study on rabbits.
    Pyhältö T; Lapinsuo M; Pätiälä H; Niiranen H; Törmälä P; Rokkanen P
    J Biomater Sci Polym Ed; 2005; 16(6):725-44. PubMed ID: 16028593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing and properties of porous poly(L-lactide)/bioactive glass composites.
    Zhang K; Wang Y; Hillmyer MA; Francis LF
    Biomaterials; 2004 Jun; 25(13):2489-500. PubMed ID: 14751733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate.
    Ahola N; Veiranto M; Rich J; Efimov A; Hannula M; Seppälä J; Kellomäki M
    J Biomater Appl; 2013 Nov; 28(4):529-43. PubMed ID: 23048066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive and degradable scaffolds of the mesoporous bioglass and poly(l-lactide) composite for bone tissue regeneration.
    Niu Y; Guo L; Liu J; Shen H; Su J; An X; Yu B; Wei J; Shin JW; Guo H; Ji F; He D
    J Mater Chem B; 2015 Apr; 3(15):2962-2970. PubMed ID: 32262496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo and In Vitro Study of a Polylactide-Fiber-Reinforced β-Tricalcium Phosphate Composite Cage in an Ovine Anterior Cervical Intercorporal Fusion Model.
    Frantzén J; Pälli A; Kotilainen E; Heino H; Mannerström B; Huhtala H; Kuokkanen H; Sándor GK; Leino K; Röyttä M; Parkkola R; Suuronen R; Miettinen S; Aro HT; Haimi S
    Int J Biomater; 2011; 2011():109638. PubMed ID: 22114603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.