BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11071605)

  • 41. Porous bioactive glass matrix in reconstruction of articular osteochondral defects.
    Ylänen HO; Helminen T; Helminen A; Rantakokko J; Karlsson KH; Aro HT
    Ann Chir Gynaecol; 1999; 88(3):237-45. PubMed ID: 10532567
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Degradation, intra-articular retention and biocompatibility of monospheres composed of [PDLLA-PEG-PDLLA]-b-PLLA multi-block copolymers.
    Sandker MJ; Duque LF; Redout EM; Chan A; Que I; Löwik CWGM; Klijnstra EC; Kops N; Steendam R; van Weeren R; Hennink WE; Weinans H
    Acta Biomater; 2017 Jan; 48():401-414. PubMed ID: 27816621
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bone regeneration with resorbable polymeric membranes. III. Effect of poly(L-lactide) membrane pore size on the bone healing process in large defects.
    Pineda LM; Büsing M; Meinig RP; Gogolewski S
    J Biomed Mater Res; 1996 Jul; 31(3):385-94. PubMed ID: 8806065
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomechanical and histological evaluation of hydrogel implants in articular cartilage.
    Malmonge SM; Zavaglia CA; Belangero WD
    Braz J Med Biol Res; 2000 Mar; 33(3):307-12. PubMed ID: 10719382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The tissue-implant interface during degradation of absorbable polyglycolide fracture fixation screws in the rabbit femur.
    Böstman OM; Päivärinta U; Partio E; Manninen M; Vasenius J; Majola A; Rokkanen P
    Clin Orthop Relat Res; 1992 Dec; (285):263-72. PubMed ID: 1332836
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fixation of distal femoral osteotomies with self-reinforced poly(L/DL)lactide 70:30/bioactive glass composite rods. An experimental study on rats.
    Tuomo P; Matti L; Hannu P; Pentti R; Henna N; Pertti T
    J Mater Sci Mater Med; 2004 Mar; 15(3):275-81. PubMed ID: 15335000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations.
    Vikingsson L; Sancho-Tello M; Ruiz-Saurí A; Martínez Díaz S; Gómez-Tejedor JA; Gallego Ferrer G; Carda C; Monllau JC; Gómez Ribelles JL
    Int J Artif Organs; 2015 Dec; 38(12):659-66. PubMed ID: 26797871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).
    Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH
    Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques.
    Zhang T; Zhang H; Zhang L; Jia S; Liu J; Xiong Z; Sun W
    Biofabrication; 2017 May; 9(2):025021. PubMed ID: 28462906
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The comparative study on the reparative effect of PLGA and collagen sponge combined with BMP on the articular cartilage defect of rabbits].
    Cui Y; Wu J; Hu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):148-52. PubMed ID: 18365608
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On how degeneration influences load-bearing in the cartilage-bone system: a microstructural and micromechanical study.
    Thambyah A; Broom N
    Osteoarthritis Cartilage; 2007 Dec; 15(12):1410-23. PubMed ID: 17689989
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A 5-7 year in vivo study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures.
    Hasegawa S; Ishii S; Tamura J; Furukawa T; Neo M; Matsusue Y; Shikinami Y; Okuno M; Nakamura T
    Biomaterials; 2006 Mar; 27(8):1327-32. PubMed ID: 16213581
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interspecies comparison of subchondral bone properties important for cartilage repair.
    Chevrier A; Kouao AS; Picard G; Hurtig MB; Buschmann MD
    J Orthop Res; 2015 Jan; 33(1):63-70. PubMed ID: 25242685
    [TBL] [Abstract][Full Text] [Related]  

  • 54. One-step articular cartilage repair: combination of in situ bone marrow stem cells with cell-free poly(L-lactic-co-glycolic acid) scaffold in a rabbit model.
    Shi J; Zhang X; Zeng X; Zhu J; Pi Y; Zhou C; Ao Y
    Orthopedics; 2012 May; 35(5):e665-71. PubMed ID: 22588408
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradation and tissue replacement of an absorbable polyglycolide screw in the fixation of rabbit femoral osteotomies.
    Böstman O; Päivärinta U; Partio E; Vasenius J; Manninen M; Rokkanen P
    J Bone Joint Surg Am; 1992 Aug; 74(7):1021-31. PubMed ID: 1325971
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model.
    Ramallal M; Maneiro E; López E; Fuentes-Boquete I; López-Armada MJ; Fernández-Sueiro JL; Galdo F; De Toro FJ; Blanco FJ
    Wound Repair Regen; 2004; 12(3):337-45. PubMed ID: 15225212
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Healing of subcapital femoral osteotomies fixed with self-reinforced poly-L-lactide screws: an experimental long-term study in sheep.
    Jukkala-Partio K; Laitinen O; Vasenius J; Partio EK; Toivonen T; Tervahartiala P; Kinnunen J; Rokkanen P
    Arch Orthop Trauma Surg; 2002 Jul; 122(6):360-4. PubMed ID: 12136303
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrospun synthetic polymer scaffold for cartilage repair without cultured cells in an animal model.
    Toyokawa N; Fujioka H; Kokubu T; Nagura I; Inui A; Sakata R; Satake M; Kaneko H; Kurosaka M
    Arthroscopy; 2010 Mar; 26(3):375-83. PubMed ID: 20206048
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Safety of, and biological and functional response to, a novel metallic implant for the management of focal full-thickness cartilage defects: Preliminary assessment in an animal model out to 1 year.
    Kirker-Head CA; Van Sickle DC; Ek SW; McCool JC
    J Orthop Res; 2006 May; 24(5):1095-108. PubMed ID: 16609973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Resorbable osteosynthesis rods. An experimental study of the biomechanics and degradation of various rods of polyglycolide and poly (-L-lactide)].
    Kunz E; Weckbach A; Rein S
    Unfallchirurgie; 1995 Feb; 21(1):1-7. PubMed ID: 7709490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.