These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11071609)

  • 1. In vitro generation of osteochondral composites.
    Schaefer D; Martin I; Shastri P; Padera RF; Langer R; Freed LE; Vunjak-Novakovic G
    Biomaterials; 2000 Dec; 21(24):2599-606. PubMed ID: 11071609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask.
    Song K; Li W; Wang H; Zhang Y; Li L; Wang Y; Wang H; Wang L; Liu T
    Biomed Mater; 2016 Oct; 11(6):065002. PubMed ID: 27767021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs.
    Cui W; Wang Q; Chen G; Zhou S; Chang Q; Zuo Q; Ren K; Fan W
    J Biosci Bioeng; 2011 Apr; 111(4):493-500. PubMed ID: 21208828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of porcine articular cartilage defect with a biphasic osteochondral composite.
    Jiang CC; Chiang H; Liao CJ; Lin YJ; Kuo TF; Shieh CS; Huang YY; Tuan RS
    J Orthop Res; 2007 Oct; 25(10):1277-90. PubMed ID: 17576624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors.
    Mahmoudifar N; Doran PM
    Biomaterials; 2005 Dec; 26(34):7012-24. PubMed ID: 16039710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams.
    Martin I; Shastri VP; Padera RF; Yang J; Mackay AJ; Langer R; Vunjak-Novakovic G; Freed LE
    J Biomed Mater Res; 2001 May; 55(2):229-35. PubMed ID: 11255174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies.
    Vainieri ML; Wahl D; Alini M; van Osch GJVM; Grad S
    Acta Biomater; 2018 Nov; 81():256-266. PubMed ID: 30273741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.
    Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW
    J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-engineered composites of bone and cartilage for mandible condylar reconstruction.
    Weng Y; Cao Y; Silva CA; Vacanti MP; Vacanti CA
    J Oral Maxillofac Surg; 2001 Feb; 59(2):185-90. PubMed ID: 11213987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2).
    Tamai N; Myoui A; Hirao M; Kaito T; Ochi T; Tanaka J; Takaoka K; Yoshikawa H
    Osteoarthritis Cartilage; 2005 May; 13(5):405-17. PubMed ID: 15882564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteochondral Tissue Regeneration Using a Tyramine-Modified Bilayered PLGA Scaffold Combined with Articular Chondrocytes in a Porcine Model.
    Lin TH; Wang HC; Cheng WH; Hsu HC; Yeh ML
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30650528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair.
    Giannoni P; Lazzarini E; Ceseracciu L; Barone AC; Quarto R; Scaglione S
    J Tissue Eng Regen Med; 2015 Oct; 9(10):1182-92. PubMed ID: 23172816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds.
    Holland TA; Bodde EW; Baggett LS; Tabata Y; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2005 Oct; 75(1):156-67. PubMed ID: 16052490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of osteochondral defects with allogeneic tissue engineered cartilage implants.
    Schreiber RE; Ilten-Kirby BM; Dunkelman NS; Symons KT; Rekettye LM; Willoughby J; Ratcliffe A
    Clin Orthop Relat Res; 1999 Oct; (367 Suppl):S382-95. PubMed ID: 10546661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits.
    Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC
    Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair.
    Emans PJ; Jansen EJ; van Iersel D; Welting TJ; Woodfield TB; Bulstra SK; Riesle J; van Rhijn LW; Kuijer R
    J Tissue Eng Regen Med; 2013 Sep; 7(9):751-6. PubMed ID: 22438217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of mature cartilage constructs using novel three-dimensional porous scaffolds for enhanced repair of osteochondral defects.
    Kasahara Y; Iwasaki N; Yamane S; Igarashi T; Majima T; Nonaka S; Harada K; Nishimura S; Minami A
    J Biomed Mater Res A; 2008 Jul; 86(1):127-36. PubMed ID: 17957716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of engineered cartilage.
    Obradovic B; Martin I; Padera RF; Treppo S; Freed LE; Vunjak-Novakovic G
    J Orthop Res; 2001 Nov; 19(6):1089-97. PubMed ID: 11781010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering.
    Abdul Rahman R; Mohamad Sukri N; Md Nazir N; Ahmad Radzi MA; Zulkifly AH; Che Ahmad A; Hashi AA; Abdul Rahman S; Sha'ban M
    Tissue Cell; 2015 Aug; 47(4):420-30. PubMed ID: 26100682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.