BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11071704)

  • 1. Effect of chronic olanzapine treatment on striatal synaptic organization.
    Roberts RC
    Synapse; 2001 Jan; 39(1):8-15. PubMed ID: 11071704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural correlates of haloperidol-induced oral dyskinesias in rat striatum.
    Roberts RC; Gaither LA; Gao XM; Kashyap SM; Tamminga CA
    Synapse; 1995 Jul; 20(3):234-43. PubMed ID: 7570355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural correlates of haloperidol-induced oral dyskinesias in rats: a study of unlabeled and enkephalin-labeled striatal terminals.
    Roberts RC; Lapidus B
    J Neural Transm (Vienna); 2003 Sep; 110(9):961-75. PubMed ID: 12938022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopaminergic synapses in the matrix of the ventrolateral striatum after chronic haloperidol treatment.
    Roberts RC; Force M; Kung L
    Synapse; 2002 Aug; 45(2):78-85. PubMed ID: 12112400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of haloperidol on cholinergic striatal interneurons: relationship to oral dyskinesias.
    Kelley JJ; Roberts RC
    J Neural Transm (Vienna); 2004 Aug; 111(8):1075-91. PubMed ID: 15254795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of vacuous chewing movements with morphological changes in rats following 1-year treatment with haloperidol.
    Meshul CK; Andreassen OA; Allen C; Jørgensen HA
    Psychopharmacology (Berl); 1996 Jun; 125(3):238-47. PubMed ID: 8815959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haloperidol-induced dyskinesia is associated with striatal NO synthase suppression: reversal with olanzapine.
    Nel A; Harvey BH
    Behav Pharmacol; 2003 May; 14(3):251-5. PubMed ID: 12799528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic olanzapine or sertindole treatment results in reduced oral chewing movements in rats compared to haloperidol.
    Gao XM; Sakai K; Tamminga CA
    Neuropsychopharmacology; 1998 Nov; 19(5):428-33. PubMed ID: 9778664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traditional and new antipsychotic drugs differentially alter neurotransmission markers in basal ganglia-thalamocortical neural pathways.
    Sakai K; Gao XM; Hashimoto T; Tamminga CA
    Synapse; 2001 Feb; 39(2):152-60. PubMed ID: 11180502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-chronic treatment with classical but not atypical antipsychotics produces morphological changes in rat nigro-striatal dopaminergic neurons directly related to "early onset" vacuous chewing.
    Marchese G; Casu MA; Bartholini F; Ruiu S; Saba P; Gessa GL; Pani L
    Eur J Neurosci; 2002 Apr; 15(7):1187-96. PubMed ID: 11982629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of antipsychotics on haloperidol-induced vacuous chewing movements and subcortical gene expression in the rat.
    McCullumsmith RE; Stincic TL; Agrawal SM; Meador-Woodruff JH
    Eur J Pharmacol; 2003 Sep; 477(2):101-12. PubMed ID: 14519413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oral dyskinesias and morphological changes in rat striatum during long-term haloperidol administration.
    Andreassen OA; Meshul CK; Moore C; Jørgensen HA
    Psychopharmacology (Berl); 2001 Aug; 157(1):11-9. PubMed ID: 11512038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent alterations in dendrites, spines, and dynorphinergic synapses in the nucleus accumbens shell of rats with neuroleptic-induced dyskinesias.
    Meredith GE; De Souza IE; Hyde TM; Tipper G; Wong ML; Egan MF
    J Neurosci; 2000 Oct; 20(20):7798-806. PubMed ID: 11027244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute administration of antipsychotics modulates Homer striatal gene expression differentially.
    de Bartolomeis A; Aloj L; Ambesi-Impiombato A; Bravi D; Caracò C; Muscettola G; Barone P
    Brain Res Mol Brain Res; 2002 Jan; 98(1-2):124-9. PubMed ID: 11834303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between dopamine D2 receptor occupancy and the vacuous chewing movement syndrome in rats.
    Turrone P; Remington G; Kapur S; Nobrega JN
    Psychopharmacology (Berl); 2003 Jan; 165(2):166-71. PubMed ID: 12417967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haloperidol reverses the changes in striatal glutamatergic immunolabeling following a 6-OHDA lesion.
    Meshul CK; Allen C
    Synapse; 2000 May; 36(2):129-42. PubMed ID: 10767060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blind, controlled, long-term study of the comparative incidence of treatment-emergent tardive dyskinesia with olanzapine or haloperidol.
    Tollefson GD; Beasley CM; Tamura RN; Tran PV; Potvin JH
    Am J Psychiatry; 1997 Sep; 154(9):1248-54. PubMed ID: 9286184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Failure to down regulate NMDA receptors in the striatum and nucleus accumbens associated with neuroleptic-induced dyskinesia.
    Hamid EH; Hyde TM; Baca SM; Egan MF
    Brain Res; 1998 Jun; 796(1-2):291-5. PubMed ID: 9689480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic administration of haloperidol and olanzapine attenuates ketamine-induced brain metabolic activation.
    Duncan GE; Miyamoto S; Lieberman JA
    J Pharmacol Exp Ther; 2003 Jun; 305(3):999-1005. PubMed ID: 12626664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of treatment with typical and atypical antipsychotic drugs on adenylyl cyclase and G proteins.
    Kaplan GB; Leite-Morris KA; Keith DJ
    Neurosci Lett; 1999 Oct; 273(3):147-50. PubMed ID: 10515180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.