These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 11071743)

  • 1. Polarization of the Electrical Double Layer. Time Evolution after Application of an Electric Field.
    Shilov VN; Delgado AV; González-Caballero F; Horno J; López-García JJ; Grosse C
    J Colloid Interface Sci; 2000 Dec; 232(1):141-148. PubMed ID: 11071743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of the Electric Double Layer: Analysis in the Frequency and Time Domains.
    López-García JJ; Horno J; González-Caballero F; Grosse C; Delgado AV
    J Colloid Interface Sci; 2000 Aug; 228(1):95-104. PubMed ID: 10882498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetics of concentrated suspensions of spherical colloidal particles with surface conductance, arbitrary zeta potential, and double-layer thickness in static electric fields.
    Carrique F; Arroyo FJ; Delgado AV
    J Colloid Interface Sci; 2002 Aug; 252(1):126-37. PubMed ID: 16290771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zeta Potential of Highly Charged Thin Double-Layer Systems.
    Hunter RJ; Midmore BR; Zhang H
    J Colloid Interface Sci; 2001 May; 237(1):147-149. PubMed ID: 11334528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Electrophoretic Mobility and Electric Conductivity of a Concentrated Suspension of Colloidal Spheres with Arbitrary Double-Layer Thickness.
    Ding JM; Keh HJ
    J Colloid Interface Sci; 2001 Apr; 236(1):180-193. PubMed ID: 11254344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The polarization of a nanoparticle surrounded by a thick electric double layer.
    Zhao H; Bau HH
    J Colloid Interface Sci; 2009 May; 333(2):663-71. PubMed ID: 19233378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the dynamic electrophoretic mobility of a spherical colloidal particle through a novel numerical solution of the electrokinetic equations.
    Preston MA; Kornbrekke R; White LR
    Langmuir; 2005 Oct; 21(22):9832-42. PubMed ID: 16229499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic Mobility of Colloidal Particles in Weak Electrolyte Solutions.
    Grosse C; Shilov VN
    J Colloid Interface Sci; 1999 Mar; 211(1):160-170. PubMed ID: 9929448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation Distribution and Electrophoretic Motions of Rod-like Particles in a Capillary.
    Han SP; Yang SM
    J Colloid Interface Sci; 1996 Jan; 177(1):132-142. PubMed ID: 10479424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the response of suspended colloidal soft particles to a constant electric field.
    López-García JJ; Grosse C; Horno J
    J Colloid Interface Sci; 2005 Jun; 286(1):400-9. PubMed ID: 15848444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-order field electrophoresis theory for a nonuniformly charged sphere.
    Kim JY; Yoon BJ
    J Colloid Interface Sci; 2003 Jun; 262(1):101-6. PubMed ID: 16256586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic mobility of rodlike goethite particles.
    Rica RA; Jiménez ML; Delgado AV
    Langmuir; 2009 Sep; 25(18):10587-94. PubMed ID: 19572511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yield Stress of Concentrated Zirconia Suspensions: Correlation with Particle Interactions.
    Megías-Alguacil D; Durán JD; Delgado AV
    J Colloid Interface Sci; 2000 Nov; 231(1):74-83. PubMed ID: 11082250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoresis of a colloidal sphere in a spherical cavity with arbitrary zeta potential distributions and arbitrary double-layer thickness.
    Keh HJ; Hsieh TH
    Langmuir; 2008 Jan; 24(2):390-8. PubMed ID: 18085803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoresis of solid particles at large Peclet numbers.
    Mishchuk NA; Dukhin SS
    Electrophoresis; 2002 Jul; 23(13):2012-22. PubMed ID: 12210253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Mobility of Two Spherical Particles with Thick Double Layers.
    Ennis J; Shugai AA; Carnie SL
    J Colloid Interface Sci; 2000 Mar; 223(1):21-36. PubMed ID: 10684666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple model of the high-frequency dynamic mobility in concentrated suspensions.
    Ahualli S; Delgado AV; Grosse C
    J Colloid Interface Sci; 2006 Sep; 301(2):660-7. PubMed ID: 16781724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of Frequency-Dependent Polarization of General Planar Electrodes with Zeta Potentials of Arbitrary Magnitude in Ionic Media.
    Scott M; Paul R; Kaler KV
    J Colloid Interface Sci; 2000 Oct; 230(2):388-395. PubMed ID: 11017747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxation times of an electrolytic cell subject to an external electric field: role of ambipolar and free diffusion phenomena.
    Alexe-Ionescu AL; Barbero G; Lelidis I; Scalerandi M
    J Phys Chem B; 2007 Nov; 111(46):13287-93. PubMed ID: 17973516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.