These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 11071747)

  • 1. On the Application of Surface Complexation Models to Ionic Adsorption.
    Zuyi T; Taiwei C; Weijuan L
    J Colloid Interface Sci; 2000 Dec; 232(1):174-177. PubMed ID: 11071747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface complexation modeling of dual-mode adsorption of organic acids: phthalic acid adsorption onto hematite.
    Hwang YS; Lenhart JJ
    J Colloid Interface Sci; 2009 Aug; 336(1):200-7. PubMed ID: 19394622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameter Estimation for the Triple Layer Model. Analysis of Conventional Methods and Suggestion of Alternative Possibilities.
    Lützenkirchen J
    J Colloid Interface Sci; 1998 Aug; 204(1):119-27. PubMed ID: 9665774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid.
    Hizal J; Apak R
    J Colloid Interface Sci; 2006 Mar; 295(1):1-13. PubMed ID: 16168423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parsons-Zobel plots: an independent way to determine surface complexation parameters?
    Lützenkirchen J
    J Colloid Interface Sci; 2006 Nov; 303(1):214-23. PubMed ID: 16934285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal Ions Binding to Natural Organic Matter Extracted from Wheat Bran: Application of the Surface Complexation Model.
    Ravat C; Monteil-Rivera F; Dumonceau J
    J Colloid Interface Sci; 2000 May; 225(2):329-339. PubMed ID: 11254270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium ion adsorption on different carbon adsorbents from aqueous solutions. Effect of surface chemistry, pore texture, ionic strength, and dissolved natural organic matter.
    Moreno-Castilla C; Alvarez-Merino MA; López-Ramón MV; Rivera-Utrilla J
    Langmuir; 2004 Sep; 20(19):8142-8. PubMed ID: 15350085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the extended RSA models in studies of particle deposition at partially covered surfaces.
    Weroński P
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):1-24. PubMed ID: 16084783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiostatically Enhanced Complexation Model for the Determination of Isopotential Equilibrium Curves.
    Ebner AD; Ritter JA; Popov BN
    J Colloid Interface Sci; 1998 Jul; 203(2):488-92. PubMed ID: 9705787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single-site model for divalent transition and heavy metal adsorption over a range of metal concentrations.
    Criscenti LJ; Sverjensky DA
    J Colloid Interface Sci; 2002 Sep; 253(2):329-52. PubMed ID: 16290865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zn2+ and Sr2+ adsorption at the TiO2 (110)-electrolyte interface: influence of ionic strength, coverage, and anions.
    Zhang Z; Fenter P; Cheng L; Sturchio NC; Bedzyk MJ; Machesky ML; Anovitz LM; Wesolowski DJ
    J Colloid Interface Sci; 2006 Mar; 295(1):50-64. PubMed ID: 16150454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Complexation of Calcium Minerals in Aqueous Solution.
    Wu L; Forsling W; Holmgren A
    J Colloid Interface Sci; 2000 Apr; 224(2):211-218. PubMed ID: 10727331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On a Simple Nonisothermal Adsorption Experiment with Organic Vapors and an Inertial Microbalance To Study the Surface Properties of Hybrid (Organic/Inorganic) Porous Materials.
    Larsen G; Silva HS; de Silva RV
    J Colloid Interface Sci; 2000 Apr; 224(1):205-208. PubMed ID: 10708512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries.
    Faria PC; Orfão JJ; Pereira MF
    Water Res; 2004 Apr; 38(8):2043-52. PubMed ID: 15087185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite.
    Weng L; Van Riemsdijk WH; Koopal LK; Hiemstra T
    J Colloid Interface Sci; 2006 Oct; 302(2):442-57. PubMed ID: 16887135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of heterogeneously charged nanoparticles on a variably charged surface by the extended surface complexation approach: charge regulation, chemical heterogeneity, and surface complexation.
    Saito T; Koopal LK; Nagasaki S; Tanaka S
    J Phys Chem B; 2008 Feb; 112(5):1339-49. PubMed ID: 18189380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach.
    Vaughan RL; Reed BE
    Water Res; 2005 Mar; 39(6):1005-14. PubMed ID: 15766955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the competitive effect of phosphate, sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite.
    Xu N; Christodoulatos C; Braida W
    Chemosphere; 2006 Aug; 64(8):1325-33. PubMed ID: 16466766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volumetric interpretation of protein adsorption: mass and energy balance for albumin adsorption to particulate adsorbents with incrementally increasing hydrophilicity.
    Noh H; Vogler EA
    Biomaterials; 2006 Dec; 27(34):5801-12. PubMed ID: 16928398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.